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1.1 INTRODUCTION: 

In regression analysis involving time series data, if the regression model includes not only the 

current but also the lagged (past) values of the explanatory variables (the X’s), it is called a 

distributed-lag model. If the model includes one or more lagged values of the dependent 

variable among its explanatory variables, it is called an autoregressive model. Thus, 

Yt = α + β0Xt + β1Xt−1 + β2Xt−2 + ut 

represents a distributed-lag model, whereas 

Yt = α + βXt + γYt−1 + ut 

is an example of an autoregressive model. The latter are also known as dynamic models since 

they portray the time path of the dependent variable in relation to its past value(s).  

 

1.2 OBJECTIVES: 

Autoregressive and distributed-lag models are used extensively in econometric analysis, and in 

this lesson we take a close look at such models with a view to finding out the following: 

1. What is the role of lags in economics? 

2. What are the reasons for the lags? 

3. Is there any theoretical justification for the commonly used lagged models in empirical 

econometrics? 

4. What is the relationship, if any, between autoregressive and 

distributed-lag models? Can one be derived from the other? 



1.3 THE ROLE OF “TIME”, “LAG”, IN ECONOMICS: 

In economics the dependence of a variable Y (the dependent variable) on another variable(s) X 

(the explanatory variable) is rarely instantaneous. Very often, Y responds to X with a lapse of 

time is called a lag. 

1.3.1 AUTOREGRESSIVE AND DISTRIBUTION-LAG 

 In regression analysis involving time series data, if the regression model includes not 

only the correct but also the lagged (past) value of the explanatory variable (the X’s) it 

is called a distribution lag Model. 

 If the model one or more lagged value of the dependent variable among its explanatory 

variable, it is called an autoregressive model. 

Yt =  + 0Xt + 1Xt-1 + 2Xt-2 + ut 

Yt =  + Xt + Yt-1 + ut    (Autoregressive Model) 

 These are used extensively in econometric analysis. 

  The partial sums i.e. change in X means value of Y following a unit change in X in the 

same period, if the change in X is maintained at the same level thereafter, then,(0 + 

1X) gives the change in y in the next period  so on are called interim, or intermediate, 

multiplies 

Yt =  + 0Xt + 1Xt-1 + 2Xt-2 +…………….kXt-k + ut 

(Distribution Log Model with the finite log k time period.) 

  [called finite coz the length of the log K is specified] 
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Yt =  + 0Xt + 1Xt-1 + 2Xt-2 +…………….kXt-k + ut 



(Where length of the lag is not defined, i.e. infinite lag model) 

 J curve shows relation between trade balance and deprication of currency. 

 

The J curve. 

 The acceleration principle of involvement theory states that investment is proportional 

to change in output  

      u   =  (Xt - Xt-1) > 0 

                        

Involved output  output  @ time (T-1) 

 

1.3.2  THE REASONS FOR LAGS: 



1.3.2.1. Psychological reasons. As a result of the force of habit (inertia), people do not change 

their consumption habits immediately following a price decrease or an income increase 

perhaps because the process of change may involve some immediate disutility. Thus, those 

who become instant millionaires by winning lotteries may not change the lifestyles to which 

they were accustomed for a long time because they may not know how to react to such a 

windfall gain immediately. Of course, given reasonable time, they may learn to live with their 

newly acquired fortune. Also, people may not know whether a change is “permanent’’ or 

“transitory.’’ Thus, my reaction to an increase in my income will depend on whether or not the 

increase is permanent. If it is only a nonrecurring increase and in succeeding periods my 

income returns to its previous level, I may save the entire increase, whereas someone else in 

my position might decide to “live it up.’’ 

1.3.2.2  Technological reasons. Suppose the price of capital relative to labor declines, making 

substitution of capital for labor economically feasible. Of course, addition of capital takes time 

(the gestation period). Moreover, if the drop in price is expected to be temporary, firms may 

not rush to substitute capital for labor, especially if they expect that after the temporary drop 

the price of capital may increase beyond its previous level. Sometimes, imperfect knowledge 

also accounts for lags. At present the market for personal computers is glutted with all kinds of 

computers with varying features and prices. Moreover, since their introduction in the late 

1970s, the prices of most personal computers have dropped dramatically. As a result, 

prospective consumers for the personal computer may hesitate to buy until they have 

Moreover, they may hesitate to buy in the expectation of further decline in price or 

innovations.  

1.3.2.3. Institutional reasons. These reasons also contribute to lags. For example, contractual 

obligations may prevent firms from switching from one source of labor or raw material to 

another. As another example, those who have placed funds in long-term savings accounts for 

fixed durations such as 1 year, 3 years, or 7 years, are essentially “locked in’’ even though 

money market conditions may be such that higher yields are available elsewhere. Similarly, 

employers often give their employees a choice among several health insurance plans, but once 

a choice is made, an employee may not switch to another plan for at least 1 year. Although this 

may be done for administrative convenience, the employee is locked in for 1 year. For the 



reasons just discussed, lag occupies a central role in economics. This is clearly reflected in the 

short-run–long-run methodology of economics. It is for this reason we say that short-run price 

or income elasticities are generally smaller (in absolute value) than the corresponding long-run 

elasticities or that short-run marginal propensity to consume is generally smaller than long-run 

marginal propensity to consume. 

 

1.3.3 AD HOC ESTIMATION OF DISTRIBUTION LAG MODEL: 

 

Since the explanatory variable Xt is assumed to be nonstochastic (or at least uncorrelated with 

the disturbance ut); 

Yt-1, Xt-2 and so an, are non-stochastic 

 The principle of OLS be applied to Where length of the lag is not defined, i.e. infinite lag 

model. 

This approach is taken by Alt & Tinbergen.  

They said that the regression should be sequence wise, fast regress Yt and Xt then Yt on Xt & 

Xt-1, then Yt on Yt, Xt-1 & Xt-2and so on. 

This will stop until lagged variable start becoming statistically insignificant or the coefficient 

of at least one of the variable changes its sign from positive to negative. 

1.3.3.1 Drawback of ad HOC. 

1. There is no a prior guide as to what is the maximum length of the lag. 

2.  Multicollinearity rears its ugly head. 

1.4  SUMMARY AND CONCLUSIONS: 



For psychological, technological, and institutional reasons, a regressand may respond to a 

regressor(s) with a time lag. Regression models that take into account time lags are known as 

dynamic or lagged regression models.  There are two types of lagged models: distributed-lag 

and autoregressive. In the former, the current and lagged values of regressors are explanatory 

variables. In the latter, the lagged value(s) of the regressand appear as explanatory variables.  

A purely distributed-lag model can be estimated by OLS, but in that case there is the problem 

of multicollinearity since successive lagged values of a regressor tend to be correlated. 

1.5  LETS SUM IT UP: 

 

This lesson  has surveyed a particular type of regression model, the dynamic regression. The 

signature feature of the dynamic model is effects that are delayed or that persist through time. 

In a static regression setting, effects embodied in coefficients are assumed to take place all at 

once. In the dynamic model, the response to an innovation is distributed through several 

periods. This lesson  examined several different forms of single equation models that contained 

lagged effects. 

1.6 EXCERCISES: 

Q.1 What do you mean by dynamic models? 

Q.2 Describe auto regressive model ? 

Q.3 Describe  the significance of  lag  in Economics ? 

Q.4 Elaborate th various reasons for lags? 

Q.5 Explain the AD HOC  estimation of distribution lag model? 

   

1.7 Suggested Reading / References: 
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2.1 INTRODUCTION:  

This lesson begins our introduction to the analysis of economic time series. By most views, 

this field has become synonymous with empirical macroeconomics and the analysis of 

financial markets.1 In this and the next lesson, we will consider a number of models and topics 

in which time and relationships through time play an explicit part in the formulation. Consider 

the dynamic regression model 

                  yt = β1 + β2xt + β3xt−1 + γ yt−1 + εt .              (1) 

 

Models of this form specifically include as right-hand side variables earlier as well as 

contemporaneous values of the regressors. It is also in this context that lagged values of the 

dependent variable appear as a consequence of the theoretical basis of the model rather than as 

a computational means of removing autocorrelation. There are several reasons why lagged 

effects might appear in an empirical model. 

       • In modeling the response of economic variables to policy stimuli, it is               expected 

that there will be possibly long lags between policy changes and their impacts.The length of 

lag between changes in monetary policy and its impact on important economic variables such 

as output and investment has been a subject of analysis for several decades. 

        • Either the dependent variable or one of the independent variables is based on 

expectations. Expectations about economic events are usually formed by aggregating new 

information and past experience. Thus, we might write the expectation of a future value of 

variable x, formed this period, as 

                

               xt = Et [x t+1| zt , xt−1, xt−2, . . .] = g(zt , xt−1, xt−2, . . .). 

For example, forecasts of prices and income enter demand equations and consumption 

equations. 



• Certain economic decisions are explicitly driven by a history of related activities. For 

example, energy demand by individuals is clearly a function not only of current prices and 

income, but also the accumulated stocks of energy using capital. Even energy demand in the 

macroeconomy behaves in this fashion—the stock of automobiles and its attendant demand for 

gasoline is clearly driven by past prices of gasoline and automobiles. Other classic examples 

are the dynamic relationship between investment decisions and past appropriation decisions 

and the consumption of addictive goods such as cigarettes and theater performances. 

2.2 OBJECTIVES : 

1. To understand the KOYCK  approach to distributed lag models 

2. To understand the rationalization of KOYCK approach 

 A. The Adaptive Expectation Model (AEM) 

 B. The Stock Adjustment or Partial Adj. Model 

3.  Understand the concept of Instrumental Variable 

2.3 THE KOYCK APPROACH TO DISTRIBUTED LAG 

MODELS 

Koyck has proposed an ingenious method of estimating distributed – lag models. Suppose we 

start with the infinite lag distributed- lag model … Assuming that the 's are all of the same 

sign, koyck assumes that they decline geometrically as follows. 

k = 
0𝑘 k= 0, 1,…....   (1) 

Where  such that 0 <  < 1, is known as the rate of decline or decay of the distributed lag and 

where 1 - is known as the speed of adjustment. 

What postulates is that each successive  coefficient is numerically less than each preceding , 

implying that as one goes back into the distant past, the effect of that lag on Y t becomes 

progressively smaller, a quite plausible assumption. After all, current and recent past incomes 

are expected to affect current consumption expenditure more heavily than income in the distant 

past. Geometrically, the koyck scheme is depicted in figure. 



 

 

As this figure shows, the value of the lag coefficient k depends, apart from the common 0; on 

the value of  .The closer  is to 1 the slower the rate of decline in k, where as the closer it is 

to zero, the more rapid the decline in k in the former case, distant past values of X will exert 

sizable impact on Yt whereas in the latter case their influence on Yt Will peter out quickly. The 

pattern can be seen clearly from the following illustration 

  



 0 1 2 3 4 5 ... 10 

0.75 0 0.750 0.560 0.420 0.320 0.240 … 0.060 

0.25 0 0.250 0.060 0.020 0.0040 0.0010 … 0.00 

 

Note these features of the koyck scheme: (1) By assuming nonnegative values for  Koyck 

rules out the 's From changing sign; (2) by assuming <1 he gives lesser weight to the distant 

's than the current ones; and (3) he ensures that the sum of the 's which gives the long-run 

multiplier, is finite; namely. 








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

 


1
1

0
0

k
k

  (2) 

As a result of the infinite lag model may be written as 

Yt =  + 0Xt + 0Xt-1 +0Xt-2+ …………….+ ui  (3) 

As it stands, the model is still not amenable to easy estimation since a large (literally infinite) 

number of parameters remain to be estimated and the parameter  Enters in a highly nonlinear 

form: Strictly speaking, the method of linear (in the parameters)  regression analysis cannot be 

applied to such a model. But now Koyck suggests an ingenious way out, he lags (3.) by one 

period to obtain. 

Yt-1 =  + 0Xt + 0Xt-2 + 0
2Xt-3 + ………….ut-1  (4) 

Multiplying equation (4) by  

..5 

Subtracting (5) from (3.), he gets 

Yt-Yt-1 = (1-) + 0Xt +(ut - ut-1)………………..(6) 



or, rearranging  

Yt = (1 - ) + 0Xt + Yt-1 + vt  ……………..(7) 

Where (vt = ut - ut-1) a moving average of ut and ut-1.  

The procedure just described is known as the Koyck transformation. Comparing (7.) with (1.) 

We see the tremendous simplification accomplished by Koyck. Whereas before we had to 

estimate  and an infinite number of 's, we now have to estimate only three unknowns ,0, 

and . Now there is no reason to expect multicollinearlity. In a sense multicollinearity is 

resolved by replacing Xt-1, Xt-2……….. by a single variable, namely Yt-1. But note the 

following features of the Koyck transformation; 

1. We started with a distributed- lag model but ended up with an autoregressive model 

because Yt-1 appears as one of the explanatory variables. This transformation shows 

how one can “convert” a distributed-lag model into an autoregressive model. 

2. The appearance of Yt-1 is likely to create some statistical problems. Yt-1 like Yt is 

stochastic, which means that we have a stochastic explanatory variable in the model. 

Recall that the classical least – squares theory is predicated on the assumption that the 

explanatory variables either are non-stochastic or, if stochastic, are distributed 

independently of  the stochastic disturbance term. Hence we must find out if Yt-1 

satisfied this assumption. 

3. In the original model (1) the disturbance term was t whereas in the transformed model 

it vt= (ut - ut-1). The statistical properties of ut Depend on what is assumed about the 

statistical properties of ut. For, as shown later, if the original ut's are serially 

uncorrelated, the vt are serially correlated. Therefore, we may have to face up to the 

serial correlation problem in addition to the stochastic explanatory variable Yt-1.  

4. The presence of lagged Y violates one of the assumptions underlying the Durbin-

Watson d test. Therefore we will have to develop an alternative to test for serial 

correlation in the presence of lagged Y. One alternative is the Durbin h test. 

 



The partial sums of the standardized βi tell us the proportion of the long-run, or total, impact 

felt by a certain time period. In practice, though, the mean or median lag is often used to 

characterize the nature of the lag structure of a distributed lag model.  

 

The Median Lag: 

 The median lag is the time required for the first half, or 50 percent, of the total change in Y 

following a unit sustained change in X. For the Koyck model, the median lag is as follows  

 

Thus, if λ = 0.2 the median lag is 0.4306, but if λ = 0.8 the median lag is 3.1067. Verbally, in 

the former case 50 percent of the total change in Y is accomplished in less than half a period, 

whereas in the latter case it takes more than 3 periods to accomplish the 50 percent change. But 

this contrast should not be surprising, for as we know, the higher the value of λ the lower 

the speed of adjustment, and the lower the value of λ the greater the speed of adjustment. 

 

The Mean Lag: 

 

Provided all βk are positive, the mean, or average, lag is defined as 

 

 

which is simply the weighted average of all the lags involved, with the respective β 

coefficients serving as weights. In short, it is a lag-weighted average of time. For the Koyck 

model the mean lag is: 

 

 

Thus, if λ = 12 , the mean lag is 1. 

From the preceding discussion it is clear that the median and mean lags serve as a summary 

measure of the speed with which Y responds to X. In the example given in Table 17.1 the mean 

lag is about 11 quarters, showing that it takes quite some time, on the average, for the effect of 

changes in the money supply to be felt on price changes. 



 

 

2.4 RATIONALIZATION OF THE KOYCK MODEL  

2.4.1 The Adaptive Expectation Model (AEM) 

 AEM is a purely algebraic process. 

Suppose we postulate the following Model. 

Yt =  + 0 + 1Xt
* + ut   (1) 

e.g. (1) postulates that the element for money is a function of expected rate of interest. 

Y = demand for money (real cash bal.) 

X* = equilibrium optimum, normal rate of unit. 

u = error term. 

Now next eq. will hypothesis about how expectation are formed; 

)()( *
1

**
  ttitt XXXX      (2) 

0    1 coeff. of expectation. 

This hypothesis (2) is know as adaptive expectation, progressive expectation or error bearing, 

popularized by Cagan & Freidman. 

So, eq.2 implies that, "economic agents will adapt their expectation in the light of past 

experience and that in particular they will Bearn from their mistakes. 
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of =1 X𝑡
∗ = Xt & expectation are realized immediately and fully in the same. 

     

 

= 0, X𝑡
∗ = X𝑡−1

∗  expectation are state. 

 

Now put the value of (3) in (1) we get 

 



Yt =  0 + 1(Xt -(1- ) X*t-2)+ ut 

Yt =  0 + 1Xt - 1(1- ) X*t-1)+ ut  (4) 

 

Taking lag in (1) we get. 

Yt =  0 + 1X
*
t-1  + ut-1 

Yt-1 -  0 - ut-1 =1X*t-1 

 

Multiply by (1-) we get  

Yt-1 (1- ) - 0 (1-) +ut (1- ) = 0 (1-) X*t-2  (5) 

 

Put the value of (5) in (4) we get 

Yt = 0 +1 Xt+ (1- )Yt-1 - 0 (1-) - U1(1-) +Ut  

Yt = 0 +1 Xt + (1- )Yt-1 - 0 +0 -
U1(1−) +Ut

𝑉𝑡
  

Yt = 0 + 1Xt + (1- )Yt-1 + Vt   (6) 

 

 1 measures the average response of Y to a unit change in X, the equal or long run 

value of X. 

 Model is autoregressive and its error learn are similar are Koyck error term.  

 

2.4.2 The Stock Adjustment or Partial Adjustment Model:- 

Marc Nerlove gave this model in economics  

(The way to adjustment the stock) 

Y*
t = 0 + 1 Xt +Ut    (1) 

 

Since the desired level of capital is not directly observable, Nerlove postulated this hypothesis, 

known as the partial adjustment. 

(Yt Yt-1)= (Y*
t - Yt-1)    (2) 

 

    0    1= coeff. of adjustment…. 

    (Yt Yt-1) = actual change.    



    (Y*
t - Yt-1)= desired change 

Yt = Y*
t - Yt-1+ Yt-1 

Yt = Y*
t - (-1)Yt-1 

 Y*
t =Yt - (-1)Yt-1    (3) 

 

Multiply eq (1) by  we get 

 

 Y*
t = 0 + 1Xt + t    (4) 

 

Put the value of (3) of in (4) 

 

Yt - (-1)Yt-1 = 0 + 1Xt + ut  

Yt = 0 + 1Xt  +(-1)Yt-1 + ut  (t) 

 

 If  = 1 it means the actual stock of capital = to the desired stock. 

  = 0, means nothing change since actual stock at time t. 

  is expected to be between these extremes sine adjustment to the desired stock of 

capital is likely to be incomplete because of rigidity etc. hence the name partial 

adjustment model. 

 Eq (1) represents the long run demand for capital stock. 

 Eq (4) represents the short run demand function for capital stock. 

 

Partial Adjustment Model 



 

The gradual adjustment of capital stock 

 

Y* = desired capital stock. 

Y1 = current actual capital stock. 

 The firm plans to close half the gap between the actual & the desired stock of capital 

each period. 

 Ist period t moves to Y2, within involved (Y2-Y1) =½(Y*-Y1). 

 Each subsequent period it closes half the gap between the capital stock at the beginning 

of the period & the desired capital stock Y*. 

 

SOME IMPORTANT POINTS:- 

 Both the models are different from one & another. 

 Models in autoregressive 

 AEM is based on uncertainty. (about the course of prices) 

 PAM is due to test or institutional rigidities, cost of change etc.  

 



2.5 INSTRUMENTAL VARIABLE: 

Under Koyck or AEM is the explanatory variable Yt-1 teach to be correlated with the error term 

Vt, this is the reason why we can't apply OLS to this model. 

If the correlation will be removed then the OLS can be applied. 

A proxy for Yt-1 that is highly correlated with Yt-1 but is uncorrelated with Vt, where Vt is the 

error term appearing in the Koyck or AEM, such the proxy is called Instruments variable. 

Liviatan suggests Xt-1 as the Instrumental variable for Yt-1. 

Koyck = Yt = (1-) + 0Xt+ Yt + (U1-Ut-1) 

ARM = Yt = 0 + 1Xt + (1-)Yt-1 + [U1-(1-)Ut-1] 

PAM= Yt = 0 + 1Xt + (1-)Yt-1 + U1 

All these models have the common form 

Yt = 0 + 1Xt + 2Yt-1 + Vt  (A) 

 

Now we will obtain the normal equation of (A) 
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But if we will apply OLS directly to eq. (A) normal eq will be 
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Difference between these two normal equal is in eq (1) 's estimated are consistent where as 

estimation for (2) may not  be consistent because Yt-1 and X1Vt may be correlated where as Xt 

and Xt-1 are uncorrelated with vt. 

Dennis Sargan has to developed a test dubbed the SARG Test to find out the validity of IV 

SARG = (n-k)R2. 

 

  no. of observe   no. of coeff. in original regression. 

 

2.6 SUMMARY AND CONCLUSIONS: 

A purely distributed-lag model can be estimated by OLS, but in thatcase there is the problem 

of multicollinearity since successive lagged values of a regressor tend to be correlated. As a 

result, some shortcut methods have been devised. These include the Koyck, the adaptive 

expectations, and partial adjustment mechanisms, the first being a purely algebraic approach 

and the other two being based on economic principles. But a unique feature of the Koyck, 

adaptive expectations, and partial adjustment models is that they all are autoregressive in 

nature in that the lagged value(s) of the regressand appear as one of the explanatory variables.  

Autoregressiveness poses estimation challenges; if the lagged regressand is correlated with the 

error term, OLS estimators of such models are not only biased but also are inconsistent. Bias 

and inconsistency are the case with the Koyck and the adaptive expectations models; the 

partial adjustment model is different in that it can be consistently estimated by OLS despite the 

presence of the lagged regressand. To estimate the Koyck and adaptive expectations models 

consistently, the most popular method is the method of instrumental variable. The 

instrumental variable is a proxy variable for the lagged regressand but with the property that it 

is uncorrelated with the error term. 

 

 



 

2.7 LETS SUM IT UP: 

 

In the end we can say that Koyck, adaptive expectations, and partial adjustment models are all 

autoregressive in nature and in all these models the lagged values of the regressand appear as 

one of the explanatory variables.  

 

 

2.8 EXCERCISES: 

 

Q1.  Discuss partial adjustment model  

Q2.  Explain koyck approach to estimate distributed lag model. 

Q3. Describe adaptive expectations model. 

Q4. Elaborate the method of instrumental variable. 

Q5. Distinguish between Mean Lag  and Median Lag? 
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3.1 INTRODUCTION: 

An alternative to the lagged regression models just discussed is the Almon polynomial 

distributed-lag model, which avoids the estimation problems associated with the 

autoregressive models. The major problem with the Almon approach, however, is that one 

must prespecify both the lag length and the degree of the polynomial. There are both formal 

and informal methods of resolving the choice of the lag length and the degree of the 

polynomial. 

3.2 OBJECTIVES: 

1. Understand the lagged/ autoregressive models. 

2. Undestand the Almon Approach to distribution lag model. 

3. Undestand the Almon Approach through grphic representation. 

3.3 THE ALMON APPROACH TO DISTRIBUTION LAG MODEL: 

Although used extensively in practice, the Koyck distribution-lag model is based on the 

assumption that the  coefficients. This approach is precisely the one suggestion by Shirley 

Almon. To illustrate her technique, let us revert to the finite distribution-lag model. '0 

increasing at first and then decreasing in 'C'  follow a cyclical pattern. 

In the figure it is assumed that the β’s increase at first and then decrease, whereas in figure it is 

assumed that they follow a cyclical pattern. Obviously, the Koyck scheme of distributed-lag 

models will not work in these cases. However, after looking at Figure 17.7a and c, it seems 

that one can express βi as a function of i, the length of the lag (time), and fit suitable curves to 

reflect the functional relationship between the two, as indicated in Figure 17.7b and d. This 

approach is precisely the one suggested by Shirley Almon. To illustrate her technique, let us 

revert to the finite distributed-lag model considered previously, namely, 



Yt = α + β0Xt + β1Xt−1 + β2Xt−2 +· · ·+βkXt−k + ut 

which may be written more compactly as 

Yt = + 


 
k

i
iiti uX

0
  



 

Figure. 



And hence the equation follows: 

Yt = + 


 
k

i
iiti uX

0
  

Following a theorem in mathematics known as Weierstrass’ theorem, Almon assumes that βi 

can be approximated by a suitable-degree polynomial in i, the length of the lag. For instance, if 

the lag scheme shown in  

Figure a, applies, we can write 

 βi = a0 + a1i + a2i
2       (2) 

which is a quadratic, or second-degree, polynomial in i (see Figure b). 

However, if the β’s follow the pattern of Figure c, we can write 

 βi = a0 + a1i + a2i
2 + a3i

3      (3) 

which is a third-degree polynomial in i (see Figure d). More generally, we may write 

        βi = a0 + a1i + a2i
2 +· · ·+amim     (4) 

which is an mth-degree polynomial in i. It is assumed that m (the degree of the polynomial) is 

less than k (the maximum length of the lag). 

To explain how the Almon scheme works, let us assume that the β’s follow the pattern shown 

in Figure a and, therefore, the second-degree polynomial approximation is appropriate. 

Substituting (2) into (1), we obtain 

𝑌1 =  𝛼 ∑(𝑎0 + 𝑎1𝑖 + 𝑎2𝑖2)𝑋𝑡−𝑖 + 𝑢1

𝑘

𝑖=0

 

 (5) 



=  𝛼 + 𝑎0 ∑ 𝑋𝑡−𝑖 + 𝑎1

𝑘

𝑖=0

∑ 𝑖𝑋𝑡−𝑖 + 𝑎2

𝑘

𝑖=0

∑ 𝑖2𝑋𝑡−𝑖 + 𝑢𝑡

𝑘

𝑖=0

 

Defining 

𝑍0𝑡 ∑ 𝑋𝑡−𝑖

𝑘

𝑖=0

 

𝑍1𝑡 ∑ 𝑖𝑋𝑡−𝑖

𝑘

𝑖=0

 

𝑍2𝑡 ∑ 𝑡2𝑋𝑡−𝑖

𝑘

𝑖=0

 

 (7) 

 

we may write (.5) as 

Yt = α + a0Z0t + a1Z1t + a2Z2t + ut     (8) 

In the Almon scheme Y is regressed on the constructed variables Z, not the original X variables. 

Note that (7) can be estimated by the usual OLS procedure. The estimates of α and ai thus 

obtained will have all the desirable statistical properties provided the stochastic disturbance 

term u satisfies the assumptions of the classical linear regression model. In this respect, the 

Almon technique has a distinct advantage over the Koyck method because, as we have seen, 

the latter has some serious estimation problems that result from the presence of the stochastic 

explanatory variable Yt−1 and X its likely correlation with the disturbance term. 

3.4 SUMMARY AND CONCLUSIONS: 



Despite the estimation problems, which can be surmounted, the distributed and autoregressive 

models have proved extremely useful in empirical economics because they make the otherwise 

static economic theory a  dynamic one by taking into account explicitly the role of time. Such 

models help us to distinguish between short- and long-run response of the dependent variable 

to a unit change in the value of the explanatory variable(s). Thus, for estimating short- and 

long-run price, income, substitution, and other elasticities these models have proved to be 

highly useful. 

3.5 LETS SUM IT UP: 

This lesson has surveyed a particular type of regression model, the dynamic regression. In the 

dynamic model, the response to an innovation is distributed through several periods. The 

progression, which mirrors the current literature is from tightly structured lag “models” (which 

were sometimes formulated to respond to a shortage of data rather than to correspond to an 

underlying theory) to unrestricted models with multiple period lag structures. Almon 

polynomial distributed-lag model, which avoids the estimation problems associated with the 

autoregressive models. The major problem with the Almon approach, however, is that one 

must prespecify both the lag length and the degree of the polynomial. 

EXCERCISES: 

Q1. Show how to estimate a polynomial distributed lag model with lags of six periods and a 

third-order polynomial. 

Q2.  Expand the rational lag model yt = [(0.6 + 2L)/(1 − 0.6L+ 0.5L2)]xt + et . What are the 

coefficients on xt , xt−1, xt−2, xt−3, and xt−4? 

Q3. Whenever the lagged dependent variable appears as an explanatory variable, the R2 is 

usually much higher than when it is not included. What are the reasons for this observation? 

Q4.  Consider the lag patterns in Figure 1.5  What degree polynomials would you fit to the lag 

structures and why? 

Q5. Consider the following distributed-lag model: 



          Yt = α + β0Xt + β1Xt−1 + β2Xt−2 + β3Xt−3 + β4Xt−4 + ut 

Assume that βi can be adequately expressed by the second-degree polynomial as follows: 

           βi = a0 + a1i + a2i2 

How would you estimate the β’s if we want to impose the restriction that β0 = β4 = 0? 

Q6. Explain  the Almon Approach to the distributed lag model? 
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4.1 INTRODUCTION: 

Consider the Auto Regressive Distributed  Model, which has become a workhorse of the 

modern literature on time-series analysis. By defining the first differences _yt = yt − yt−1 and 

_xt = xt − xt−1 we can rearrange 

   yt = μ + γ1yt−1 + β0xt + β1xt−1 + εt to obtain 

_yt = μ + β0_xt + (γ1 − 1)(yt−1 − θ xt−1) + εt ,          (1) 

where θ = −(β0 + β1)/(γ1 − 1). This form of the model is in the error correction form. In this 

form, we have an equilibrium relationship, _yt = μ+β0_xt +εt , and the equilibrium error, 

(γ1 − 1)(yt−1 − θ xt−1), which account for the deviation of the pair of variables from that 

equilibrium. The model states that the change in yt from the previous period consists of the 

change associated with movement with xt along the long-run equilibrium path plus a part (γ1 − 

1) of the deviation (yt−1 − θ xt−1) from the equilibrium.With a model in logs, this relationship 

would be in proportional terms. 

4.2 OBJECTIVES: 

1. Understand the concept of cointegration and error correction mechanism. 

2. Understand the Granger Causality Test. 

3. Understand the relationship between causality and exogeneity. 

 

4.3 COINTEGRATION AND ERROR CORRECTION MECHANISM (ECM) 

We have warned that the regression of a non-stationary time series on another non-stationary 

time series may produce a spurious regression. Suppose, then, that we regress PCE on PDI as 

follows: 



 

PCE=Personal Disposable Income 

PCC=Personal Consumption Expenditure 

Suppose we now subject ut to unit root analysis and find that it is stationary; that is, it is I(0). 

This is an interesting situation, for although PCEt and PDIt are individually I(1), that is, they 

have stochastic trends, their linear combination is eq. 2 I(0). So to speak, the linear 

combination cancels out the stochastic trends in the two series. If you take consumption and 

income as two I(1) variables, savings defined as (income − consumption) could be I(0). As a 

result, a regression of consumption on income as in.1) would be meaningful (i.e., not 

spurious). In this case we say that the two variables are cointegrated. Economically speaking, 

two variables will be co-integrated if they have a long-term, or equilibrium, relationship 

between them. Economic theory is often expressed in equilibrium terms, such as Fisher’s 

quantity theory of money or the theory of purchasing parity (PPP), just to name a few. 

We just showed that PCE and PDI are co-integrated; that is, there is a long term, or 

equilibrium, relationship between the two. Of course, in the short run there may be 

disequilibrium.  

The error correction mechanism (ECM) first used by Sargan and later popularized by Engle 

and Granger corrects for disequilibrium. An important theorem, known as the Granger 

representation theorem, states that if two variables Y and X are cointegrated, then the 

relationship between the two can be expressed as ECM. Now consider the following model: 

PCEt = α0 + α1PDIt + α2ut−1 + t      (3) 

where  as usual denotes the first difference operator, εt is a random error term, and ut−1 = 

(PCEt−1 − β1 − β2PDIt−1), that is, the one-period lagged value of the error. 



ECM equation (3) states that PCE depends on PDI and also on the equilibrium error term. If 

the latter is nonzero, then the model is out of equilibrium. Suppose PDI is zero and ut−1 is 

positive. This means PCEt−1 is too high to be in equilibrium, that is, PCEt−1 is above its 

equilibrium value of (α0 + α1PDIt−1). Since α2 is expected to be negative, the term α2ut−1 is 

negative and, therefore, PCEt will be negative to restore the equilibrium. That is, if PCEt is 

above its equilibrium value, it will start falling in the next period to correct the equilibrium 

error; hence the name ECM. By the same token, if ut−1 is negative (i.e., PCE is below its 

equilibrium value), α2ut−1 will be positive, which will cause CPEt to be positive, leading PCEt 

to rise in period t. 

Thus, the absolute value of α2 decides how quickly the equilibrium is restored. In practice, we 

estimate ut−1 by 𝑢̂t−1 = (PCEt −  𝛽̂1 −𝛽̂2 PDIt). 

Statistically, the equilibrium error term is zero, suggesting that PCE adjust to changes in PDI 

in the same time relation. 

  



 

4.4 THE GRANGER CAUSALITY TEST: 

 To explain the Granger test, we will see the GDP and many effect upon each other. 

Is GDP that "Causes" the money supply M(GDPM). 

or money supply M caused GDP (MGDP). 

( cause) 

Test involves the following of regression  
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 ut = u2t are uncorrelated. 

 Multivariable causality through the technique  of vector autoregressive (VAR)   

 

4.4.1 Now we will discuss 4 cases. 

1. Unidirectional causally from M to GDP is indicated if the estimated coefficients on the 

lagged M in (1) are statistically different from zero in (2). 

2. Conversely, unidirectional causality from GDP to M exists if the set of lagged M. 

Coefficient in (1) is not statically different from zero & the set of lagged GDP coefficient 

(2). 

3. Feedback, or bilateral causality, when set of M & GDP coefficients due. Statically 

significant diff from zero in both regression. 



4. Independent is suggest when the set of M & GDP coefficients due statically significant in 

both the regression. 

Cox = MS GDP 

  GDP MS 

  GDP  MS 

Step involved in implementing the granger causality list are a under 

1. RSSR:- Residual sum of Square (restricted) i.e. regress current GDP on all lagged. GDP 

term & other variable, don't include M variable in the regressive. 

2. Include lagged M terms. 

 RSSUR= Unrestructed  

3. The Null hypothesis is H0 i = 0 i.e. lagged M terms do not belong in the regression. 

4. Apply F Test 

 F= 
(𝑅𝑆𝑆𝑅−𝑅𝑆𝑆𝑈𝑅)/𝑚

𝑅𝑆𝑆𝑈𝑅/(𝑛−𝑘)
 

   m = no. of lagged M 

 k = no. of parameter estimated in the unrestricted region  

5. If F value exceeds the critical F value then M cause GDP. 

6. If step 1 to 5 repacked to test the model i.e GDP cause M. 

4.4.2 Assumptions 

1. GDP and M are stationary. 



2. No. of lagged terms to be introduced in the causality list is an imp-que. 

3. Error are uncorrelated. 

4. Vector Autoregressive. 

 4.5 A NOTE ON CAUSALITY AND EXOGENEITY 

Economic variables are often classified into two broad categories, endogenous and exogenous. 

Loosely speaking, endogenous variables are the equivalent of the dependent variable in the 

single-equation regression model and exogenous variables are the equivalent of the X 

variables, or regressors, in such a model, provided the X variables are uncorrelated with the 

error term in that equation. 

Now we raise an interesting question: Suppose in a Granger causality test we find that an X 

variable (Granger) causes a Y variable without being caused by the latter (i.e., no bilateral 

causality). Can we then treat the X variable as exogenous? In other words, can we use Granger 

causality (or noncausality) to establish exogeneity? 

To answer this question, we need to distinguish three types of exogeneity: (1) weak, (2) strong, 

and (3) super. To keep the exposition simple, suppose we consider only two variables, Yt and 

Xt, and further suppose we regress Yt on Xt. We say that Xt is weakly exogenous if Yt also does 

not explain Xt. In this case estimation and testing of the regression model can be done, 

conditional on the values of Xt. As a matter of fact, going back to previous Lesson , you will 

realize that our regression modeling was conditional on the values of the X variables. Xt is said 

to be strongly exogenous if current and lagged Y values do not explain it (i.e., no feedback 

relationship). And Xt is superexogenous if the parameters in the regression of Y and X do not 

change even if the X values change; that is, the parameter values are invariant to changes in the 

value(s) of X. If that is in fact the case, then, the famous “Lucas critique” may lose its force. 

The reason for distinguishing the three types of exogeneity is that, “In general, weak 

exogeneity is all that is needed for estimating and testing, strong exogeneity is necessary for 

forecasting and super exogeneity for policy analysis.” 



 

Returning to Granger causality, if a variable, say Y, does not cause another variable, say X, can 

we then assume that the latter is exogenous? Unfortunately, the answer is not straightforward. 

If we are talking about weak exogeneity, it can be shown that Granger causality is neither 

necessary nor sufficient to establish exogeneity. On the other hand, Granger causality is 

necessary (but not sufficient) for strong exogeneity. The proofs of these statements are beyond 

the scope of this book. For our purpose, then, it is better to keep the concepts of Granger 

causality and exogeneity separate and treat the former as a useful descriptive tool for time 

series data. In subsequent Lesson we will discuss a test to find out if a variable can be treated 

as exogenous. 



4.6 SUMMARY AND CONCLUSIONS 

 Despite the estimation problems, which can be surmounted, the distributed and 

autoregressive models have proved extremely useful in empirical economics because 

they make the otherwise static economic theory a dynamic one by taking into account 

explicitly the role of time. Such models help us to distinguish between short- and long-

run response of the dependent variable to a unit change in the value of the explanatory 

variable(s). Thus, for estimating short- and long-run price, income, substitution, and 

other elasticities these models have proved to be highly useful. 

  Because of the lags involved, distributed and or autoregressive models raise the topic of 

causality in economic variables. In applied work, the Granger causality modeling has 

received considerable attention. But one has to exercise great caution in using the 

Granger methodology because it is very sensitive to the lag length used in the model. 

  Even if a variable (X) “Granger-causes” another variable (Y), it does not mean that X is 

exogenous. We distinguished three types of exogeneity weak, strong, and super and 

pointed out the importance of the distinction. 

 

4.7 LETS SUM IT UP: 

In last we conclude that , distributed and or autoregressive models raise the topic of causality 

in economic variables and causality is all about finding the variable which is affecting the 

dependent variable. The causality can be both ways one way or none at all. 

 

4.8 EXCERCISES: 

Q1.describe cointegration and error correction mechanism (ecm)? 

Q2. What do you mean by equilibrium error? 



Q3. Explain the Granger Causality test? 

Q.4 Write a note on Causality and Exogeneity? 

4.9  Suggested  Reading / References: 
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1.1 INTRODUCTION: 

In this lesson  we are concerned exclusively with single equation models, i.e., models in which 

there was a single dependent variable Y and one or more explanatory variables, the X’s. In 

such models the emphasis was on estimating and/or predicting the average value of Y 

conditional upon the fixed values of the X variables. The cause-and-effect relationship, if any, 

in such models therefore ran from the X’s to the Y. But in many situations, such a one-way or 

unidirectional cause-and-effect relationship is not meaningful. This occurs if Y is determined 

by the X’s, and some of the X’s are, in turn, determined by Y. In short, there is a two way, or 

simultaneous, relationship between Y and (some of) the X’s, which makes the distinction 

between dependent and explanatory variables of dubious value. It is better to lump together a 

set of variables that can be determined simultaneously by the remaining set of variables—

precisely what is done in simultaneous-equation models. In such models there is more than one 

equation—one for each of the mutually, or jointly, dependent or endogenous variables.1 And 

unlike the single-equation models, in the simultaneous-equation models one may not estimate 

the parameters of a single equation without taking into account information provided by other 

equations in the system. 

What happens if the parameters of each equation are estimated by applying, say, the method of 

OLS, disregarding other equations in the system? Recall that one of the crucial assumptions of 

the method of OLS is that the explanatory X variables are either nonstochastic or, if stochastic 

(random), are distributed independently of the stochastic disturbance term. If neither of these 

conditions is met, then, as shown later, the least-squares estimators are not only biased but also 

inconsistent; that is, as the sample size increases indefinitely, the estimators do not converge to 

their true (population) values. Thus, in the following hypothetical system of equations, 

                

                   Y1i = β10 + β12Y2i + γ11X1i + u1i        (1) 

                 



                  Y2i = β20 + β21Y1i + γ21X1i + u2i        (2) 

where Y1 and Y2 are mutually dependent, or endogenous, variables and X1 is an exogenous 

variable and where u1 and u2 are the stochastic disturbance terms, the variables Y1 and Y2 are 

both stochastic. Therefore, unless it can be shown that the stochastic explanatory variable Y2 in 

(1) is distributed independently of u1 and the stochastic explanatory variable Y1 in (2) is 

distributed independently of u2, application of the classical OLS to these equations 

individually will lead to inconsistent estimates. 

1.2 OBJECTIVES: 

1. Understand the concept of simultaneous equations. 

2. Understand the structural form, Reduced form, and  Recursive form of simultaneous 

equations. 

3.The another objective is to find the  inconsistency of OLS estimators 

1.3 SIMULTANEOUS EQUATIONS.:-  

Simultaneous equations are the equation when there is two way relation i.e. Y is determined by 

X's and since X's are determined by Y. 

In these models there is more than 2 equation one of each of the mutually, dependent or 

endogenous variable 

ex.  Y1t = 10 + 12Y2i + Y1i X1i + U1i 

 Y2t = 20 + 21Y1i + Y2i X1i + U2i 

Where Y1 & Y2 are mutually dependent or endogenous, and X1 is exogenous & U2 & U2 

stochastic disturbance terms, the variable Y1 and Y2 are stochastic. 



1.3.1   STRUCTURAL MODEL:- It is a complete system of equation which describe the 

structure of the relationships of the economic variable it express the endogenous 

variable as functions of others endogenous variables. 

Structural systems 

 Y1 = 13 Y3 + U1    

 Y2 = 23Y3 + 21X1 + U2    

 Y3 = Y1 +Y2 + Y2    

1.3.2   REDUCED FORM MODEL:- The reduced for of a structural model is the model in 

which the endogenous variable are expressed as a function of the predetermined variable. 

 These are two way to get reduced form a express the endogenous  variable directly as 

function of predetermined variable obtaining the reduced form of model is to solve the 

structural system of endogenous variable in terms of the predetermined variable the 

structural parameters & the disturbance. 

 

1.3.3  RECURSIVE MODEL:- A model is called  recursive of its structural eq. can be 

ordered in such a very that the first includes only predetermined variable in the rights 

hand side, the seconds eq. contains predetermined variable and the first endogenous 

variable (of the first eq.) in the eight hand side an so on. 

Cx -  Y1 = f(X1 X2………………… Xk,U1)   

 Y2 = f(X1 X2………………… X, Y1,U2)   

 Y3 = f(X1 X2………………… X,Y1, Y2, U3)   

and so on 



Also called triangular system coz the coefficient of the end ('s) for a triangular ray. 

1.4 The Simultaneous Equation Bias:- Inconsistency of OLS Estimation 

If one or more of the explanatory variable are correlated with the disturbance term in that 

equation because the estimator thus obtained are inconsistent. 

Its prove that Yt & Ut are correlated following procedure is:-  

Ct = 0 +1Yt + Ut    0<, <1   (1) 

(Consumption function) 

Yt = Ct +It (St)      (2) 

Income indentification 

Subtracting (1) in (2) we get 

Yt = 0 +1Yt + Ut + It      (3) 

Yt - 1Yt = 0 + Ut + It  

Yt (1-1)= 0 +Ut + It      (4) 

Yt = 
0

(1− 1)
+ 

1

(1− 1)
I𝑡 +

1

(1− 1)

Ut    (5) 

E(Yt) = 
0

(1− 1)
+  

1

(1− 1)
I𝑡     (6) 

   E(Ut) = 0 

   It = exogenous 

Now subtracting (6) from (5) we get 



Yt - E(Yt)= 
0

(1− 1)
+ 

1

(1− 1)
I𝑡 +

1

(1− 1)

Ut -  

  
0

(1− 1)
−  

1

(1− 1)
I𝑡 

Yt - E(Yt) = 
Ut

(1− 1)
      (7) 

Now 

Ut - E(Ut) = Ut      (8) 

cov (Yt, Ut) = E [Yt -E(Ut)) (Ut - E(Ut)] 

 = 𝐸
(𝑈𝑡)

(1−𝛽1)
 Ut from (7) & (8) 

 = 𝐸
(𝑢𝑡

2)

(1−𝛽1)
  

Cov (Yt, ut) = 
𝜎2

(1−𝛽1)
      (9) 

1.4.1 ASSUMPTION: 

1. 2 is positive, cov. between Y & Ut is bound to be different from zero. 

2. OLS estimators in this situation are inconsistent. 

Now OLS estimator 𝛽̂1 is an inconsistent estimator of , bceause of the correlation between Yt 

& ut. 

𝛽̂1  = 
(Ct−C̅)(Yt−Y̅)

(Yt+𝑌̅)2  

 = 
 ctyt

yt
2     (10) 



 = 
 CtYt

yt
2   (Small letter we mean deviation of mean value) 

Subtracting Ct from (1)  

𝛽̂1  = 
(β0+β1Yt+ Ut)yt

yt
2  

 = 𝛽1
yt+ ut

yt
2     (11)  Yt = 0, 

Yt+ Ut

yt
2 = 1 

E(̂1) = 1 + E {
yt+ ut

yt
2 }   (12) 

We can't evaluate E {
yt+ ut

yt
2 } 

Since the expectation operation  is a linear operator. 

̂1
 is a biased estimator of 𝛽1 

Applying plan (pro ability limit) to (11) 

plim (̂1) = plim (𝛽1) + plim {
yt+ ut

yt
2 } 

 = plim (𝛽1) + plim 
yt+ ut/n

yt
2/n

    (13) 

   n= Total no. of observations 

We have about by n, now the sample covariance between Y & U and sample variance of Y. 

If n increasing indefinitely, cov between Y & U to approximate the true population cov. by 

which eq (a) is equal to (2/(1 - 1). 

If n tends to infinity, the sample variance of Y will apporx. its population variance say 2
y. 

Plim (̂1) = 𝛽1 + 
𝜎2/(1−𝛽1)

𝜎𝑦
2  



 = 𝛽1 +  
1

(1−𝛽1)
 

𝜎2

𝜎𝑦
2      (14) 

 0 < 1 < 1 

 2 & 𝜎𝑦
2 both are +ve 

 plim (̂1) > 𝛽1 

 ̂1 is biased estimate and the bias will not disappear no matter how large the sample 

size is. 

  

1.5 SUMMARY AND CONCLUSIONS: 

In contrast to single-equation models, in simultaneous-equation models more than one 

dependent, or endogenous, variable is involved, necessitating as many equations as the number 

of endogenous variables.  A unique feature of simultaneous-equation models is that the 

endogenous variable (i.e., regressand) in one equation may appear as an explanatory 

variable (i.e., regressor) in another equation of the system. As a consequence, such an 

endogenous explanatory variable becomes stochastic and is usually correlated with the 

disturbance term of the equation in which it appears as an explanatory variable. In this 

situation the classical OLS method may not be applied because the estimators thus obtained are 

not consistent, that is, they do not converge to their true population values no matter how large 

the sample size. 

1.6 LETS SUM IT UP: 

Although most of our work thus far has been in the context of single-equation models, even a 

cursory look through almost any economics textbook shows that much of the theory is built on 

sets, or systems, of relationships. Familiar examples include market equilibrium, models of the 

macroeconomy, and sets of factor or commodity demand equations. Whether one’s interest is 

only in a particular part of the system or in the system as a whole, the interaction of the 

variables in the model will have important implications for both interpretation and estimation 

of the model’s parameters. 



1.7 EXCERCISES: 

 

Q1. Develop a simultaneous-equation model for the supply of and demand for dentists in the 

United States. Specify the endogenous and exogenous variables in the model. 

Q2. To study the relationship between inflation and yield on common stock,Bruno Oudet‡ 

used the following model: 

Rbt = α1 + α2Rst + α3Rbt−1 + α4Lt + α5Yt + α6NISt + α7 It + u1t 

Rst = β1 + β2Rbt + β3Rbt−1 + β4Lt + β5Yt + β6NISt + β7Et + u2t 

where L = real per capita monetary base 

           Y = real per capita income 

           I = the expected rate of inflation 

           NIS = a new issue variable 

           E = expected end-of-period stock returns, proxied by lagged                     stock price 

ratios 

            Rbt= bond yield 

            Rst= common stock returns 

a. Offer a theoretical justification for this model and see if your reasoning agrees with that of 

Oudet. 

b. Which are the endogenous variables in the model? And the exogenous variables? 

c. How would you treat the lagged Rbt—endogenous or exogenous? 



Q3. G. Menges developed the following econometric model for the West German economy*: 

             Yt = β0 + β1Yt−1 + β2 It + u1t 

             It = β3 + β4Yt + β5Qt + u2t 

             Ct = β6 + β7Yt + β8Ct−1 + β9 Pt + u3t 

             Qt = β10 + β11Qt−1 + β12 Rt + u4t 

Where 

 Y = national income 

I = net capital formation 

C = personal consumption 

Q = profits 

P = cost of living index 

R = industrial productivity 

t = time 

u = stochastic disturbances 

 

a. Which of the variables would you regard as endogenous and which as exogenous? 

b. Is there any equation in the system that can be estimated by the single-equation least-squares 

method? 

c. What is the reason behind including the variable P in the consumption function? 



Q4. Describe the various forms of simultaneous equations? 

Q5. Explain the simiultaneous equation bias? 
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2.1 INTRODUCTION: 

In this lesson we consider the nature and significance of the identification problem. The crux 

of the identification problem is as follows: Recall the demand-and-supply model. Suppose that 

we have time series data on Q and P only and no additional information (such as income of the 

consumer, price prevailing in the previous period, and weather condition). The identification 

problem then consists in seeking an answer to this question: Given only the data on P and Q, 

how do we know whether we are estimating the demand function or the supply function? 

Alternatively, if we think we are fitting a demand function, how do we guarantee that it is, in 

fact, the demand function that we are estimating and not something else? 

A moment’s reflection will reveal that an answer to the preceding question is necessary before 

one proceeds to estimate the parameters of our demand function. In this lesson we shall show 

how the identification problem is resolved. We first introduce a few notations and definitions 

and then illustrate the identification problem with several examples. This is followed by the 

rules that may be used to find out whether an equation in a simultaneous-equation model is 

identified, that is, whether it is the relationship that we are actually estimating, be it the 

demand or supply function or something else.  

2.2 OBJECTIVES: 

1. Our objective is to identify the parameters of a structural equation. 

2. To identify the underidentified equations. 

3. To identify the exactly identified equations. 

4. To identify the overidentified equations. 

 

2.3 IDENTIFICATION PROBLEM: 



By the identification problem we mean whether numerical estimates of the parameters of a 

structural equation can be obtained from the estimated reduced-form coefficients. If this can be 

done, we say that the particular equation is identified. If this cannot be done, then we say that 

the equation under consideration is unidentified, or underidentified. An identified equation 

may be either exactly (or fully or just) identified or overidentified. It is said to be exactly 

identified if unique numerical values of the structural parameters can be obtained. It is said to 

be overidentified if more than one numerical value can be obtained for some of the parameters 

of the structural equations.  

The identification problem arises because different sets of structural coefficients may be 

compatible with the same set of data. To put the matter differently, a given reduced-form 

equation may be compatible with different structural equations or different hypotheses 

(models), and it may be difficult to tell which particular hypothesis (model) we are 

investigating. In the remainder of this section we consider several examples to show the nature 

of the identification problem. 

2.3.1 UNDER IDENTIFICATION: 

Consider once again the demand-and-supply model together with the market-clearing, or 

equilibrium, condition that demand is equal to supply. By the equilibrium condition, we obtain  

α0 + α1Pt + u1t = β0 + β1Pt + u2t     (1) 

Solving (19.2.1), we obtain the equilibrium price 

 Pt = 0 + vt        (2) 

where 

0 = 
𝛽0−𝛼0

𝛼01−𝛽1
        (3) 

vt = 
𝑢2𝑡−𝑢1𝑡

1−𝛽1
         (4) 



Incidentally, note that the error terms vt and wt are linear combinations of the original error 

terms u1 and u2. Equations (2) and (5) are reduced-form equations. Now our demand-and-

supply model contains four structural coefficients α0, α1, β0, and β1, but there is no unique 

way of estimating them. Why? The answer lies in the two reduced-form coefficients given in 

(3) and (6). These reduced-form coefficients contain all four structural parameters, but there is 

no way in which the four structural unknowns can be estimated from only two reduced-form 

coefficients. Recall from high school algebra that to estimate four unknowns we must have 

four (independent) equations, and, in general, to estimate k unknowns we must have k 

(independent) equations. Incidentally, if we run the reduced-form regression (2) and (5), we 

will see that there are no explanatory variables, only the constants, and these constants will 

simply give the mean values of P and Q (why?). What all this means is that, given time series 

data on P (price) and Q (quantity) and no other information, there is no way the researcher can 

guarantee whether he or she is estimating the demand function or the supply function. That is, 

a given Pt and Qt represent simply the point of intersection of the appropriate demand-and-

supply curves because of the equilibrium condition that demand is equal to supply. 

For an equation to be identified, that is, for its parameters to be estimated, it must be shown 

that the given set of data will not produce a structural equation that looks similar in appearance 

to the one in which we are interested. If we set out to estimate the demand function, we must 

show that the given data are not consistent with the supply function or some mongrel equation.  

 

2.3.1.1 UNDER IDENTIFICATION`  

 

 Qt = 0 + 1Pt + u1t      (1) 

 Qt = 0 + 1Pt + u2t      (2) 

Equation (1) as demand function and equation (2) as supply function 

 0 + 1Pt + u1t = 0 + 1Pt + u2t     (3) 



 1Pt -1Pt  = 0 - 0 - u1t + u2t     (4) 

 (1- t)Pt = 0 - 0 - u1t + u2t     (5) 

Pt = 
𝛽0

1− 1

−  
0

1− 1

−  
𝑈1𝑡+ 𝑈2𝑡

0− 0

     (6) 

Pt = 
𝛽0− 0

1− 1

 +  
𝑈2𝑡+ 𝑈1𝑡

0− 0

      (7) 

Pt = 0 + Vt          (8) 

0 = 
𝛽0− 0

1− 1

 

Vt =  
𝑈2𝑡+ 𝑈1𝑡

1− 1

 

2.3.2 JUST, OR EXACT, IDENTIFICATION: 

The reason we could not identify the preceding demand function or the supply function was 

that the same variables P and Q are present in both functions and there is no additional 

information, such as that indicated in .But suppose we consider the following demand-and-

supply model: 

 

(Demand function as eq. 1 and supply function as eq. 2) 

where I = income of the consumer, an exogenous variable, and all other variables are as 

defined previously. 

Notice that the only difference between the preceding model and our original demand-and-

supply model is that there is an additional variable in the demand function, namely, income. 

From economic theory of demand we know that income is usually an important determinant of 

demand for most goods and services. Therefore, its inclusion in the demand function will give 



us some additional information about consumer behavior. For most commodities income is 

expected to have a positive effect on consumption (α2 > 0). 

Using the market-clearing mechanism, quantity demanded = quantity supplied, we have 

α0 + α1Pt + α2It + u1t = β0 + β1Pt + u2t    (3) 

Solving Eq. (3) provides the following equilibrium value of Pt :  

Pt = 0 + 1It + vt        (4) 

where the reduced-form coefficients are 

 (5) 

Substituting the equilibrium value of point into the preceding demand or supply function, we 

obtain the following equilibrium quantity: 

 



Since (4) and (6) are both reduced-form equations, the OLS method can be applied to estimate 

their parameters. Now the demand-and supply model (1) and (2) contains five structural 

coefficients— α0, α1, α2, β1, and β2. But there are only four equations to estimate them, namely, 

the four reduced-form coefficients 0, 1, 2, and 3 given in (5) and (7).  

 

Hence, unique solution of all the structural coefficients is not possible. But it can be readily 

shown that the parameters of the supply function can be identified (estimated) because 

 

The demand-and-supply model given in Eqs and contain six structural coefficients—α0, α1, 

α2, β0, β1, and β2—and there are six reduced form coefficients to estimate them. Thus, we 

have six equations in six unknowns, and normally we should be able to obtain unique 

estimates. Therefore, the parameters of both the demand and supply equations can be 

identified, and the system as a whole can be identified. To check that the preceding demand-

and-supply functions are identified, we can also resort to the device of multiplying the demand 

equation  by λ (0 ≤ λ ≤ 1) and the supply equation by 1 − λ and add them to obtain a mongrel 

equation. This mongrel equation will contain both the predetermined variables It and Pt−1; 

hence, it will be observationally different from the demand as well as the supply equation 

because the former does not contain Pt−1 and the latter does not contain it. 

2.3.3 OVERIDENTIFICATION: 

For certain goods and services, income as well as wealth of the consumer is an important 

determinant of demand. Therefore, let us modify the demand function (1 previous) as follows, 

keeping the supply function as before: 

Demand function: Qt = α0 + α1Pt + α2It + α3Rt + u1t  (1) 



Supply function: Qt = β0 + β1Pt + β2Pt−1 + u2t   (2) 

where in addition to the variables already defined, R represents wealth; for most goods and 

services, wealth, like income, is expected to have a positive effect on consumption. 

Equating demand to supply, we obtain the following equilibrium price and quantity: 

 

Above are eq. 3,4, & 5 

The preceding demand-and-supply model contains seven structural coefficients, but there are 

eight equations to estimate them—the eight reducedform coefficients given in (5); 

 that is, the number of equations is greater than the number of unknowns. As a result, unique 

estimation of all the parameters of our model is not possible, which can be shown easily. From 

the preceding reduced-form coefficients, we can obtain 

 



that is, there are two estimates of the price coefficient in the supply function, and there is no 

guarantee that these two values or solutions will be identical. Moreover, since β1 appears in the 

denominators of all the reduced-form coefficients, the ambiguity in the estimation of β1 will be 

transmitted to other estimates too. 

 

2.4 SUMMARY AND CONCLUSIONS: 

The problem of identification precedes the problem of estimation. 

The identification problem asks whether one can obtain unique numerical estimates of the 

structural coefficients from the estimated reducedform coefficients.If this can be done, an 

equation in a system of simultaneous equations is identified. If this cannot be done, that 

equation is un- or underidentified. An identified equation can be just identified or 

overidentified. In the former case, unique values of structural coefficients can be obtained; in 

the latter, there may be more than one value for one or more structural parameters. The 

identification problem arises because the same set of data may be compatible with different 

sets of structural coefficients, that is, different models. Thus, in the regression of price on 

quantity only, it is difficult to tell whether one is estimating the supply function or the demand 

function, because price and quantity enter both equations. To assess the identifiability of a 

structural equation, one may apply  the technique of reduced-form equations, which 

expresses an endogenous variable solely as a function of predetermined variables. 

2.5 LETS SUM IT UP: 

The models surveyed in this lesson involve most of the issues that arise in analysis of linear 

equations in econometrics. Before one embarks on the process of estimation, it is necessary to 

establish that the sample data actually contain sufficient information to provide estimates of 

the parameters in question. This is the question of identification. Identification involves both 

the statistical properties of estimators and the role of theory in the specification of the model. 

Once identification is established, there are numerous methods of estimation. 



2.6 EXCERCISES: 

Q 1. Consider the following two-equation model: 

          

           y1 = γ1y2 + β11x1 + β21x2 + β31x3 + ε1, 

           y2 = γ2y1 + β12x1 + β22x2 + β32x3 + ε2. 

a. Verify that, as stated, neither equation is identified. 

b. Establish whether or not the following restrictions are sufficient to identify (or partially 

identify) the model: 

(1) β21 = β32 = 0, 

(2) β12 = β22 = 0, 

(3) γ1 = 0, 

(4) γ1 = γ2 and β32 = 0, 

(5) σ12 = 0 and β31 = 0, 

(6) γ1 = 0 and σ12 = 0, 

(7) β21 + β22 = 1, 

(8) σ12 = 0, β21 = β22 = β31 = β32 = 0, 

(9) σ12 = 0, β11 = β21 = β22 = β31 = β32 = 0. 

 

Q.2 For the model 



             y1 = γ1y2 + β11x1 + β21x2 + ε1, 

             y2 = γ2y1 + β32x3 + β42x4 + ε2, 

 show that there are two restrictions on the reduced-form coefficients. Describe a procedure for 

estimating the model while incorporating the restrictions.  

Q3. The model 

           Y1t = β10 + β12Y2t + γ11 X1t + u1t 

           Y2t = β20 + β21Y1t + u2t 

produces the following reduced-form equations: 

                  

           Y1t = 4 + 8X1t 

            Y2t = 2 + 12X1t 

a. Which structural coefficients, if any, can be estimated from the reduced-form coefficients? 

Demonstrate your contention. 

b. How does the answer to (a) change if it is known a priori that 

(1) β12 = 0 and (2) β10 = 0? 

Q4.  Expalin underidentified, overidentified and exactly identified problems? 

Q5. Give some examples of reduced form equations? 
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3.1 INTRODUCTION: 

 

As the examples shown previous in Section, in principle it is possible to resort to the reduced-

form equations to determine the identification of an equation  in a system of simultaneous 

equations. But these examples also show how time-consuming and laborious the process can 

be. Fortunately, it is not essential to use this procedure. The so-called order and rank 

conditions of identification lighten the task by providing a systematic routine. To understand 

the order and rank conditions, we introduce the following notations:  

M = number of endogenous variables in the model 

m = number of endogenous variables in a given equation 

K = number of predetermined variables in the model including the intercept 

k = number of predetermined variables in a given equation 

K - k = m-1 

3.2 OBJECTIVES: 

1. Understand the order condition of identifiability. 

2. Understand the rank condition of identifiability. 

3. Understand the test of simultaneity. 

3.3 THE ORDER CONDITION OF IDENTIFIABILITY : 

A necessary (but not sufficient) condition of identification, known as the order condition, may 

be stated in two but equivalent ways as follows: 

Definition 1:  

In a model of M simultaneous equations, in order for an equation to be identified, it must 

exclude at least M-1 variables (endogenous as well as predetermined)  

appearing in the model. If it excludes exactly M-1 variables, the equation is just identified. If it 

excludes more than M-1 variables, it is over identified. 



Definition 2: 

In a model of M simultaneous equations, in order for an equation to be identified, the number 

of predetermined variables excluded from the equation must not be less than the number of 

endogenous variables included in that equation less 1, that is, 

          K - k ≥ m – 1 

If            K - k = m – 1, the equation is just identified, 

 But          K - k > m – 1 it is over identified. 

To illustrate the order condition, let us take examples. 

 



  



 

3.4 THE RANK CONDITION OF IDENTIFIABILITY: 

The order condition discussed previously is a necessary but  not  sufficient 

condition for identification; that is, even if it is satisfied, it may  happen that an  

equation is not  identified. Thus, in  Example,  the  supply equation was  

identified by the  order condition because it excluded the  income variable  It , 

which appeared in  the  demand function. But  identification is accomplished 

only  if α2 , the  coefficient of  It   in  the  demand function, is not zero,  that is, if 

the income variable not only probably but actually does  enter the  demand 

function. 

More  generally, even  if the  order condition K − k ≥ m − 1 is satisfied by an  

equation, it  may  be  unidentified because the  predetermined variables 

excluded from  this   equation but   present in  the   model may   not   all  be 

independent so that there may  not  be one-to-one correspondence between the  

structural coefficients (the  β’s) and  the  reduced-form coefficients. 

That is, we may not be able to estimate the structural parameters from the 

reduced-form coefficients, as we shall show shortly. Therefore, we need both a 

necessary and sufficient condition for identification. This is provided by the  

rank  condition of identification, which may  be  stated as follows: 

 

As an illustration of the rank condition of identification, consider the following hypothetical 

system of simultaneous equations in which the Y variables are endogenous and the X variables 

are predetermined. 



 

 

 

To facilitate identification, let us write the preceding system in Table , which is self-

explanatory. Let us first apply the order condition of identification.  By the order condition 

each equation is identified. Let us recheck with the rank condition. Consider the first equation, 

which excludes variables Y4, X2, and X3 (this is represented by zeros in the first row). For this 

equation to be identified, we must obtain at least one nonzero determinant of order 3 × 3 from 

the coefficients of the variables excluded from this equation but included in other equations. 

To obtain the determinant we first obtain the relevant matrix of coefficients of variables Y4, 

X2, and X3 included in the other equations. In the present case there is only one such matrix, 

call it A, defined as follows: 

 

 

It can be seen that the determinant of this matrix is zero: 

 

Since the determinant is zero, the rank of the matrix (6), denoted by ρ(A), is less than 3. 

Therefore, Eq. (2) does not satisfy the rank condition and hence is not identified. As noted, the 

rank condition is both a necessary and sufficient condition for identification. Therefore, 

although the order condition shows that Eq. (2) is identified, the rank condition shows that it is 

not. Apparently, the columns or rows of the matrix A given in (6) are not (linearly) 

independent, meaning that there is some relationship between the variables Y4, X2, and X3. As 

a result, we may not have enough information to estimate the parameters of equation (2); the 

reduced-form equations for the preceding model will show that it is not possible to obtain the 



structural coefficients of that equation from the reduced-form coefficients. The reader should 

verify that by the rank condition Eqs. (3) and (4) are also unidentified but Eq. (5) is identified. 

As the preceding discussion shows, the rank condition tells us whether the equation under 

consideration is identified or not, whereas the order condition tells us if it is exactly identified 

or overidentified. 

 

To apply the rank condition one may proceed as follows: 

 

1. Write down the system in a tabular form, as shown in table of coefficients of variables. 

2. Strike out the coefficients of the row in which the equation under consideration appears. 

3. Also strike out the columns corresponding to those coefficients in 2 which are nonzero. 

4. The entries left in the table will then give only the coefficients of the variables included in 

the system but not in the equation under consideration. From these entries form all possible 

matrices, like A, of order M− 1 and obtain the corresponding determinants. If at least one non-

vanishing or nonzero determinant can be found, the equation in question is ( just or over) 

identified. The rank of the matrix, say, A, in this case is exactly equal to M− 1. If all the 

possible (M− 1)(M− 1) determinants are zero, the rank of the matrix A is less than M− 1 and 

the equation under investigation is not identified. 

Our discussion of the order and rank conditions of identification leads to the following general 

principles of identifiability of a structural equation in a system of M simultaneous equations: 

 

1. If K − k > m − 1 and the rank of the A matrix is M − 1, the equation is overidentified. 

2. If K − k = m − 1 and the rank of the matrix A is M − 1, the equation is exactly identified. 

3. If K − k ≥ m − 1 and the rank of the matrix A is less than M − 1, the equation is 

underidentified. 

4. If K − k < m − 1, the structural equation is unidentified. The rank of the A matrix in this 



case is bound to be less than M − 1. 

Henceforth, when we talk about identification we mean exact identification, or 

overidentification. There is no point in considering unidentified, or underidentified, equations 

because no matter how extensive the data, the structural parameters cannot be estimated. 

However, as shown parameters of overidentified as well as just identified equations can be 

estimated. Which condition should one use in practice: Order or rank? For large simultaneous-

equation models, applying the rank condition is a formidable task.  

Therefore, as Harvey notes, 

 Fortunately, the order condition is usually sufficient to ensure identifiability, and although it is 

important to be aware of the rank condition, a failure to verify it will rarely result in disaster. 

 

3.5 A TEST OF SIMULTANEITY: 

 

If there is no simultaneous equation, or simultaneity problem, the OLS estimators produce 

consistent and efficient estimators. On the other hand, if there is simultaneity, OLS estimators 

are not even consistent. In the presence of simultaneity, as we will show in Lesson 20, the 

methods of two stage least squares (2SLS) and instrumental variables will give estimators that 

are consistent and efficient. Oddly, if we apply these alternative methods when there is in fact 

no simultaneity, these methods yield estimators that are consistent but not efficient (i.e., with 

smaller variance). All this discussion suggests that we should check for the simultaneity 

problem before we discard OLS in favor of the alternatives. 

As we showed earlier, the simultaneity problem arises because some of the regressors are 

endogenous and are therefore likely to be correlated with the disturbance, or error, 

term.Therefore, a test of simultaneity is essentially a test of whether (an endogenous) regressor 

is correlated with the error term. If it is, the simultaneity problem exists, in which case 

alternatives to OLS must be found; if it is not, we can use OLS. To find out which is the case 

in a concrete situation, we can use Hausman’s specification error test. 

3.5.1 Hausman Specification Test: 



 

A version of the  Hausman specification error test  that can  be used for testing 

the  simultaneity problem can  be explained as follows: 

To fix ideas, consider the  following two-equation model: 

 

Demand function:  

Qt  = α0  + α1 Pt + α2 It  + α3 Rt  + u1t    (1) 

Supply function:  

Qt  = β0  + β1 Pt + u2t    (2) 

Where: P = price 

Q = quantity 

I = income 

R = wealth 

u’s = error terms 

Assume that I and R are  exogenous. Of course, P and Q are endogenous. 

Now  consider the  supply function (2). If there is no simultaneity problem 

(i.e.,  P and  Q are  mutually independent), Pt  and  u2t  should be un- correlated 

(why?). On the other hand, if there is simultaneity, Pt  and  u2t  will be 

correlated. To find  out  which is the  case,  the  Hausman test  proceeds as 

follows: 

First, from (1) and  (2) we  obtain the  following reduced-form equations: 

 

Pt  =   0 +   1 It  +   2 Rt  + vt                                           (3) 



Qt  =   3 +   4 It  +   3 Rt  + wt                                          (4) 

 

where v and  w  are  the  reduced-form error terms. Estimating (3) by 

OLS we obtain 

 

 

Therefore, 

P̂t  =  ̂  0 +  ̂  1 It  +  ̂  2 Rt    (5) 

Pt  = P̂t + v̂ t      (6) 



where P̂t  are  estimated Pt  and  v̂ t  are  the  estimated residuals. Substituting 

(6) into  (2), we get 

 

Qt  = β0  + β1 P̂t + β1 v̂ t + u2t                                  (7) 

 

Note: The coefficients of Pt  and  vt  are  the  same. 

Now,  under the  null  hypothesis that there is no simultaneity, the  correlation  

between v̂ t  and  u2t  should be zero,  asymptotically. Thus, if we run the 

regression (7) and  find  that the  coefficient of vt   in  (7) is statistcally zero,  we can 

conclude that there is no simultaneity problem. Of course, this  conclusion will be 

reversed if we find  this  coefficient to be statistically significant. 

Essentially, then, the  Hausman test  involves the  following steps: 

Step 1.  Regress Pt  on  It  and  Rt  to obtain v̂ t . 

Step 2.  Regress Qt  on  P̂t  and  v̂ t  and  perform a t test  on the  coefficient of v̂ t . If it 

is significant, do not reject the hypothesis of simultaneity; otherwise, reject it. For 

efficient estimation, however, Pindyck and  Rubinfeld suggest regressing Qt  on  Pt  

and  v̂ t . 

3.6 SUMMARY AND CONCLUSIONS: 

However, this time-consuming procedure can be avoided by resorting to either the order 

condition or the rank condition of identification. 

Although the order condition is easy to apply, it provides only a necessary condition for 

identification. On the other hand, the rank condition is both a necessary and sufficient 

condition for identification. If the rank condition is satisfied, the order condition is satisfied, 

too, although the converse is not true. In practice, though, the order condition is generally 

adequate to ensure identifiability.  In the presence of simultaneity, OLS is generally not 

applicable. But if one wants to use it nonetheless, it is imperative to test for simultaneity 

explicitly. The Hausman specification test can be used for this purpose.Although in practice 



deciding whether a variable is endogenous or exogenous is a matter of judgment, one can use 

the Hausman specification test to determine whether a variable or group of variables is 

endogenous or exogenous. 

3.7 LETS SUM IT UP: 

In last we can say that, Identification involves both the statistical properties of estimators and 

the role of theory in the specification of the model. Once identification is established, there are 

numerous methods of estimation. We considered a number of single equation techniques 

including least squares, instrumental variables, GMM, and maximum likelihood. 

3.8 EXCERCISES: 

Q1.  Explain the Hausman  specification  test? 

Q2. Describe the order condition of  identifiability? 

Q3. Describe the Rank condition of identifiability? 

Q4. Consider the following extended Keynesian model of income determination: 

             Consumption function: Ct = β1 + β2Yt − β3Tt + u1t 

             Investment function: It = α0 + α1Yt−1 + u2t 

            Taxation function: Tt = γ0 + γ1Yt + u3t 

            Income identity: Yt = Ct + It + Gt 

where C = consumption expenditure 

Y = income 

I = investment 

T = taxes 

G = government expenditure 

u’s = the disturbance terms 



In the model the endogenous variables are C, I, T, and Y and the predetermined variables are G 

and Yt−1 . By applying the order condition, check the identifiability of each of the equations in 

the system and of the system as a whole. What would happen if rt , the interest rate, assumed 

to be exogenous, were to appear 

on the right-hand side of the investment function? 
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4.1 INTRODUCTION: 

Having discussed the nature of the simultaneous-equation models in the previous two lessons, in 

this lesson we turn to the problem of estimation of the parameters of such models. At the outset 

it may be noted that the estimation problem is rather complex because there are a variety of 

estimation techniques with varying statistical properties. In view of the introductory nature of 

this text, we shall consider only a few of these techniques. Our discussion will be simple and 

often heuristic, the finer points being left to the references. 

4.2 OBJECTIVES: 

1. To understand the Method Of Indirect Least Squares (Ils) 

2. To understand the Method Of Two-Stage Least Squares (2sls) 

 4.3 THE METHOD OF INDIRECT LEAST SQUARES (ILS): 

For a just or exactly identified structural equation, the method of obtaining the estimates of the 

structural coefficients from the OLS estimates of the reduced-form coefficients is known as the 

method of indirect least squares (ILS), and the estimates thus obtained are known as the indirect 

least squares estimates. ILS involves the following three steps: 

Step 1. We first obtain the reduced-form equations. As noted in previously, these reduced-form 

equations are obtained from the structural equations in such a manner that the dependent 

variable in each equation is the only endogenous variable and is a function solely of the 

predetermined (exogenous or lagged endogenous) variables and the stochastic error term(s). 

Step 2. We apply OLS to the reduced-form equations individually. This operation is permissible 

since the explanatory variables in these equations are predetermined and hence uncorrelated 

with the stochastic disturbances. The estimates thus obtained are consistent.9 

Step 3. We obtain estimates of the original structural coefficients from the estimated reduced-

form coefficients obtained in Step 2. As noted in previously, if an equation is exactly identified, 
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there is a one-to-one correspondence between the structural and reduced-form coefficients; that 

is, one can derive unique estimates of the former from the latter.  

As this three-step procedure indicates, the name ILS derives from the fact that structural 

coefficients (the object of primary enquiry in most cases) are obtained indirectly from the OLS 

estimates of the reduced-form coefficients. 

4.4 ESTIMATION OF AN OVERIDENTIFIED EQUATION: THE METHOD OF TWO-

STAGE LEAST SQUARES (2SLS) 

Consider the following model: 

Y1t= 𝛽10 +       + 𝛽11Y2t+𝛾2tX1t+ 𝛾12X2t+u1t……  …1 income function 

Y2t= 𝛽20 + 𝛽21Y1t                       +u1t…………        2 money supply function 

where Y1 = income 

 Y2 = stock of money 

 X1 = investment expenditure 

 X2 = government expenditure on goods and services 

The variables X1 and X2 are exogenous. The income equation, a hybrid of quantity-theory–

Keynesian approaches to income determination, states that income is determined by money 

supply, investment expenditure, and government expenditure. The money supply function 

postulates that the stock of money is determined (by the Federal Reserve System) on the basis 

of the level of income.  

Applying the order condition of identification, we can see that the income equation is 

underidentified whereas the money supply equation is overidentified. There is not much that can 

be done about the income equation short of changing the model specification. The 

overidentified money supply function may not be estimated by ILS because there are two 

estimates of β21(the reader should verify this via the reduced-form coefficients). 
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As a matter of practice, one may apply OLS to the money supply equation, but the estimates 

thus obtained will be inconsistent in view of the likely correlation between the stochastic 

explanatory variable Y1 and the stochastic disturbance term u2. Suppose, however, we find a 

“proxy” for the stochastic explanatory variable Y1 such that, although “resembling” Y1 (in the 

sense that it is highly correlated with Y1), it is uncorrelated with u2. Such a proxy is also known 

as an instrumental variable. If one can find such a proxy, OLS can be used straightforwardly to 

estimate the money supply function. But how does one obtain such an instrumental variable? 

One answer is provided by the two-stage least squares (2SLS), developed independently by 

Henri Theil and Robert Basmann. As the name indicates, the method involves two successive 

applications of OLS. The process is as follows: 

Stage 1. To get rid of the likely correlation between Y1 and u2, regress first Y1 on all the 

predetermined variables in the whole system, not just that equation. In the present case, this 

means regressing Y1 on X1 and X2 as follows: 

3 

                                                     4 

where tY1̂  is an estimate of the mean value of Y conditional upon the fixed X’s. Note that 

(20.4.3) is nothing but a reduced-form regression because only the exogenous or predetermined 

variables appear on the right-hand side. Equation (20.4.3) can now be expressed as 

                   5 

which shows that the stochastic Y1 consists of two parts: tY1̂ , which is a linear combination of 

the nonstochastic X’s, and a random component tU1̂ . Following the OLS theory, tY1̂ and tU1̂ are 

uncorrelated. (Why?) 

Stage 2. The overidentified money supply equation can now be written as 
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6 

Comparing(.6) with (2), we see that they are very similar in appearance, the only difference 

being that Y1 is replaced by tY1̂ . What is the advantage of (.6)? It can be shown that although Y1 

in the original money supply equation is correlated or likely to be correlated with the 

disturbance term u2 (hence rendering OLS inappropriate), tY1̂  in (6) is uncorrelated with tU1̂

asymptotically, that is, in the large sample (or more accurately, as the sample size increases 

indefinitely). As a result, OLS can be applied to (.6), which will give consistent estimates of the 

parameters of the money supply function. 

As this two-stage procedure indicates, the basic idea behind 2SLS is to “purify” the stochastic 

explanatory variable Y1 of the influence of the stochastic disturbance u2. This goal is 

accomplished by performing the reduced-form regression of Y1 on all the predetermined 

variables in the system (Stage 1), obtaining the estimates tY1̂ and replacing tY1̂ in the original 

equation by the estimated tY1̂ , and then applying OLS to the equation thus transformed (Stage 

2). The estimators thus obtained are consistent; that is, they converge to their true values as the 

sample size increases indefinitely. 

To illustrate 2SLS further, let us modify the income–money supply model as follows: 

    7 

8 

where, in addition to the variables already defined, X3 = income in the previous time period and 

X4 = money supply in the previous period. Both X3 and X4 are predetermined. 
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It can be readily verified that both Eqs. (7) and (.8) are overidentified. To apply 2SLS, we 

proceed as follows: In Stage 1 we regress the endogenous variables on all the predetermined 

variables in the system. Thus, 

9 

  10 

In Stage 2 we replace Y1 and Y2 in the original (structural) equations by their estimated values 

from the preceding two regressions and then run the OLS regressions as follows: 

11 

                         12 

where u*1t = u1t + β12 tu2̂  and *
2̂tu = u2t + β21

*
2̂tu . The estimates thus obtained will be consistent. 

Note the following features of 2SLS. 

1. It can be applied to an individual equation in the system without directly taking into account 

any other equation(s) in the system. Hence, for solving econometric models involving a large 

number of equations, 2SLS offers an economical method. For this reason the method has been 

used extensively in practice. 

2. Unlike ILS, which provides multiple estimates of parameters in the overidentified equations, 

2SLS provides only one estimate per parameter. 

3. It is easy to apply because all one needs to know is the total number of exogenous or 

predetermined variables in the system without knowing any other variables in the system. 
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4. Although specially designed to handle overidentified equations, the method can also be 

applied to exactly identified equations. But then ILS and 2SLS will give identical estimates.  

5. If the R2 values in the reduced-form regressions (that is, Stage 1 regressions) are very high, 

say, in excess of 0.8, the classical OLS estimates and 2SLS estimates will be very close. 
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4.5 SUMMARY AND CONCLUSIONS: 

1. Assuming that an equation in a simultaneous-equation model is identified (either exactly or 

over-), we have several methods to estimate it. 

2. These methods fall into two broad categories: Single-equation methods and systems methods. 

3. For reasons of economy, specification errors, etc. the single-equation methods are by far the 

most popular. A unique feature of these methods is that one can estimate a single-equation in a 

multiequation model without worrying too much about other equations in the system. (Note: For 

identification purposes, however, the other equations in the system count.) 

4. Three commonly used single-equation methods are OLS, ILS, and 2SLS. 

5. Although OLS is, in general, inappropriate in the context of 

simultaneous-equation models, it can be applied to the so-called recursive models where there is 

a definite but unidirectional cause-and-effect relationship among the endogenous variables. 

6. The method of ILS is suited for just or exactly identified equations. In this method OLS is 

applied to the reduced-form equation, and it is from the reduced-form coefficients that one 

estimates the original structural coefficients. 

7. The method of 2SLS is especially designed for overidentified equations, although it can also 

be applied to exactly identified equations. But then the results of 2SLS and ILS are identical. 

The basic idea behind 2SLS is to replace the (stochastic) endogenous explanatory variable by a 

linear combination of the predetermined variables in the model and use this combination as the 

explanatory variable in lieu of the original endogenous 

variable. The 2SLS method thus resembles the instrumental variable method of estimation in 

that the linear combination of the predetermined variables serves as an instrument, or proxy, for 

the endogenous regressor. 
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8. A noteworthy feature of both ILS and 2SLS is that the estimates obtained are consistent, that 

is, as the sample size increases indefinitely, the estimates converge to their true population 

values. The estimates may not satisfy small-sample properties, such as unbiasedness and 

minimum variance. 

Therefore, the results obtained by applying these methods to small samples and the inferences 

drawn from them should be interpreted with due caution. 

4.6 EXCERCISES: 

Q1. State whether each of the following statements is true or false: 

a. The method of OLS is not applicable to estimate a structural equation in a simultaneous-

equation model. 

b. In case an equation is not identified, 2SLS is not applicable. 

c. The problem of simultaneity does not arise in a recursive simultaneous-equation model. 

d. The problems of simultaneity and exogeneity mean the same thing. 

e. The 2SLS and other methods of estimating structural equations have desirable statistical 

properties only in large samples. 

f. There is no such thing as an R2 for the simultaneous-equation model as a whole.  

*g. The 2SLS and other methods of estimating structural equations are not applicable if the 

equation errors are autocorrelated and/or are correlated across equations. 

h. If an equation is exactly identified, ILS and 2SLS give identical results. 

Q2. Why is it unnecessary to apply the two-stage least-squares method to exactly identified 

equations? 

Q3.  Consider the following modified Keynesian model of income determination: 
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                 Ct = β10 + β11Yt + u1t 

                 It = β20 + β21Yt + β22Yt−1 + u2t 

                Yt = Ct + It + Gt 

where C = consumption expenditure 

I = investment expenditure 

Y = income 

G = government expenditure 

Gt and Yt−1 are assumed predetermined 

a. Obtain the reduced-form equations and determine which of the preceding equations are 

identified (either just or over). 

b. Which method will you use to estimate the parameters of the overidentified equation and of 

the exactly identified equation? Justify your answer. 

Q4. Explain ILS in detail  

Q.5 Explain 2SLS in detail. 
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1.1 INTRODUCTION : 

A time series is a sequence of data points, measured typically at successive points in time 

spaced at uniform time intervals. Time series data have a natural temporal ordering. This makes 

time series analysis distinct from cross-sectional studies, in which there is no natural ordering of 

the observations (e.g. explaining people's wages by reference to their respective education 

levels, where the individuals' data could be entered in any order). Time series analysis is also 

distinct from spatial data analysis where the observations typically relate to geographical 

locations (e.g. accounting for house prices by the location as well as the intrinsic characteristics 

of the houses). A stochastic model for a time series will generally reflect the fact that 

observations close together in time will be more closely related than observations further apart. 

In addition, time series models will often make use of the natural one-way ordering of time so 

that values for a given period will be expressed as deriving in some way from past values, rather 

than from future values (see time reversibility.) 

Time series analysis can be applied to real-valued, continuous data, discrete numeric data, or 

discrete symbolic data (i.e. sequences of characters, such as letters and words in the English 

language.) 

Stochastic Process:  A random or stochastic process is a collection of random variable ordered 

in time.  

Stationary Stochastic Process: (SSP) A type of stochastic process that has received a great 

deal of attention and scrutiny by time series analyses is SSP.  

A stochastic process is said to be state if its means and variance are constant over time and the 

value of the Cov between the two time period depends only on the distance between the two 

time period.  

http://en.wikipedia.org/wiki/Data_point
http://en.wikipedia.org/wiki/Cross-sectional_study
http://en.wikipedia.org/wiki/Spatial_data_analysis
http://en.wikipedia.org/wiki/Time_reversibility
http://en.wikipedia.org/wiki/Real_number
http://en.wiktionary.org/wiki/discrete
http://en.wikipedia.org/wiki/Data_type#Numeric_types
http://en.wikipedia.org/wiki/English_language
http://en.wikipedia.org/wiki/English_language
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1.2 OBJECTIVES: 

1. The key objective is to explain the unit root test of stationarity.  

2. To understand the Dickey Fuller Test. 

3. To understand the Augmented Dickey Fuller Test.  

1.3 THE UNIT ROOT TEST: 

A test of stationary that has become widely popular over the past several years as unit root test.  
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 (Using 1st differential operate)  

,10,0   thenif that is we have unit root, time series under consideration is non-

stationary.   

)4.(..........)( 1 tttt uYYY    

The term non-stationary, random walk and unit root can be treated as synonymous.  
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1|||   i.e. the time serves It is stationary.   

1.4 DICKEY FULLER (DF) TEST: 

 

A test use to find out if the estimated coefficient of Yt-1 in eq(1) is zero or not. 

Yt= Yt-1 + ut    (1)  

   = ist difference operator  

   = (-1) 

Dicky Fuller have shown that under the null hypotheses that = 0, the estimated t value of the 

coefficient of Yt-1 in eq. (1) follows the t (two) statictic. 

In the literature t statistic test is known as the DF test. 

In if = 0 is reflected we can use ……. t test. 

DF test is estimated on 3 different forms, i.e. under 3 different null hypotheses. 

Yt is a random walk  

Yt= Yt-1 + ut     (2)  

Yt is a walk within drift 

Yt= 1 + Yt-1 + ut    (3)  

Yt is a random walk with drift around a stochastic trend. 

Yt= 1 + 2 + Yt-1 + ut    (4)  
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1.5 THE AUGMENTED DICKEY–FULLER (ADF) TEST: 

In case the ut are correlated, Dickey and Fuller have developed a test, known as the augmented 

Dickey–Fuller (ADF) test. This test is conducted by “augmenting” the preceding three 

equations by adding the lagged values of the dependent variable Yt .  The ADF test here 

consists of estimating the following regression: 

…….1 

where t is a pure white noise error term and where Yt−1 = (Yt−1 − Yt−2), Yt−2 = (Yt−2 − Yt−3), 

etc. The number of lagged difference terms to include is often determined empirically, the idea 

being to include enough terms so that the error term in (1) is serially uncorrelated. In ADF we 

still test whether δ = 0 and the ADF test follows the same asymptotic distribution as the DF 

statistic, so the same critical values can be used. 

1.6 SUMMARY AND CONCLUSIONS: 

Regression analysis based on time series data implicitly assumes that the underlying time series 

are stationary. The classical t tests, F tests, etc. are based on this assumption.  In practice most 

economic time series are nonstationary. A stochastic process is said to be weakly stationary if 

its mean, variance, and autocovariances are constant over time (i.e., they are timeinvariant). At 

the informal level, weak stationarity can be tested by the correlogram of a time series, which is a 

graph of autocorrelation at various lags. For stationary time series, the correlogram tapers off 

quickly, whereas for nonstationary time series it dies off gradually. For a purely random series, 

the autocorrelations at all lags 1 and greater are zero. At the formal level, stationarity can be 

checked by finding out if the time series contains a unit root. The Dickey–Fuller (DF) and 

augmented Dickey–Fuller (ADF) tests can be used for this purpose.  An economic time series 

can be trend stationary (TS) or difference stationary (DS). A TS time series has a deterministic 

trend, whereas a DS time series has a variable, or stochastic, trend. The common practice of 

including the time or trend variable in a regression model to detrend the data is justifiable only 
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for TS time series. The DF and ADF tests can be applied to determine whether a time series is 

TS orDS.  

1.7 LETS SUM IT UP: 

This lesson has completed our survey of techniques for the analysis of time-series data. 

Contemporary econometric analysis of macroeconomic data has added considerable structure 

and formality to trending variables, which are more common than not in that setting. The 

variants of the Dickey–Fuller tests for unit roots are an indispensable tool for the analys to  time 

series data.  

1.8 EXCERCISES: 

Q1. What is meant by weak stationarity? 

Q2. What is meant by an integrated time series ? 

Q3.  If a time series is I(3), how many times would you have to difference it to make it 

stationary? 

Q4. What are Dickey–Fuller (DF) and augmented DF tests?  

Q5. What is the meaning of a unit root? 

Q6. If a time series is I(3), how many times would you have to difference it to make it 

stationary? 

Q7. What are Dickey–Fuller (DF) and augmented DF tests?  

Q8. What is the meaning of a unit root? 

. 1.9 Suggested  Reading / References: 

 

1. Baltagi, B.H.(1998). Econometrics, Springer,  New York. 
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2. Chow,G.C.(1983). Econometrics,  McGraw Hill, New York. 

3. Goldberger, A.S.(1998). Introductory Econometrics, Harvard University Press, Cambridge, 

Mass. 

4. Green, W.(2000). Econometrics, Prentice Hall of India, New Delhi. 

5. Gujarati, D.N.(1995). Basic Econometrics. McGraw Hill, New Delhi. 

6. Koutsoyiannis,A.(1977). Theory of  Econometrics(2nd Esdn.). The Macmillan Press Ltd. 

London. 

7. Maddala, G.S.(1997). Econometrics, McGraw Hill; New York. 
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2.1 INTRODUCTION: 

Studies in empirical macroeconomics almost always involve nonstationary and trending 

variables, such as income, consumption, money demand, the price level, trade flows, and 

exchange rates. Accumulated wisdom and the results of the previous sections suggest 

that the appropriate way to manipulate such series is to use differencing and other 

transformations (such as seasonal adjustment) to reduce them to stationarity and then to analyze 

the resulting series as VARs or with the methods of Box and Jenkins. But recent research and a 

growing literature has shown that there are more interesting, appropriate ways to analyze 

trending variables. In the fully specified regression model 

                                  

                           yt = βxt + εt , 

there is a presumption that the disturbances εt are a stationary, white noise series. But this 

presumption is unlikely to be true if yt and xt are integrated series. Generally, if two series are 

integrated to different orders, then linear combinations of them will be integrated to the higher 

of the two orders. Thus, if yt and xt are I (1)—that is, if both are trending variables—then we 

would normally expect yt − βxt to be I (1) regardless of the value of β, not I (0) (i.e., not 

stationary). If yt and xt are each drifting upward with their own trend, then unless there is some 

relationship between those trends, the difference between them should also be growing, with yet 

another trend. There must be some kind of inconsistency in the model. On the other hand, if the 

two series are 

both I (1), then there may be a β such that 

                      

                                          εt = yt − βxt 
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is I (0). Intuitively, if the two series are both I (1), then this partial difference between them 

might be stable around a fixed mean. The implication would be that the series are drifting 

together at roughly the same rate. Two series that satisfy this requirement are said to be 

cointegrated, and the vector [1,−β] (or any multiple of it) is a cointegrating vector. In such a 

case, we can distinguish between a long-run relationship between yt and xt , that is, the manner 

in which the two variables drift upward together, and the short-run dynamics, that is, the 

relationship between deviations of yt from its long-run trend and deviations of xt from its long-

run trend. If this is the case, then differencing of the data would be counterproductive, since it 

would obscure the long-run relationship between yt and xt . Studies of cointegration and a 

related technique, error correction, are concerned with methods of estimation that preserve the 

information about both forms of covariation. 

2.2 OBJECTIVES: 

 

1. To understand the meaning of cointegration. 

2.  To understand the Engel Granger (EG)  or Augmented Engle Granger (AEG) 

3. To understand  the cointegrating regression Durbin–Watson (CRDW) test. 

4. Cointegration and Error Correction Mechanism (ECM). 

 

2.3 TIME SERIES ON ANOTHER UNIT ROOT TIME SERIES: 

We have warned that the regression of a non-stationary time series on another non-stationary 

time series may produce a spurious regression. Suppose, then, that we regress PCE on PDI as 

follows: 
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……….1, 2 

Suppose we now subject ut to unit root analysis and find that it is stationary; that is, it is I(0). 

This is an interesting situation, for although PCEt and PDIt are individually I(1), that is, they 

have stochastic trends, their linear combination (.2) is I(0). So to speak, the linear combination 

cancels out the stochastic trends in the two series. If you take consumption and income as two 

I(1) variables, savings defined as (income & consumption) could be I(0). As a result, a 

regression of consumption on income as in (1) would be meaningful (i.e., not spurious). In this 

case we say that the two variables are cointegrated. Economically speaking, two variables will 

be cointegrated if they have a long-term, or equilibrium, relationship between them. Economic 

theory is often expressed in equilibrium terms, such as Fisher’s quantity theory of money or the 

theory of purchasing parity (PPP), just to name a few. 

2.4 TESTING FOR COINTEGRATION: 

A number of methods for testing cointegration have been proposed in the literature. We 

consider here two comparatively simple methods: (1) the DF or ADF unit root test on the 

residuals estimated from the co-integrating regression and (2) the cointegrating regression 

Durbin–Watson (CRDW) test. 

Engle Granger (EG) or Augmented Engle Granger (AEG) Test.: We already know how to apply 

the DF or ADF unit root tests. All we have to do is estimate a regression like (1), obtain the 

residuals, and use the DF or ADF tests. There is one precaution to exercise, however. Since the 

estimated ut are based on the estimated cointegrating parameter β2, the DF and ADF critical 

significance values are not quite appropriate. Engle and Granger have calculated these values, 

which can be found in the references. Therefore, the DF and ADF tests in the present context 

are known as Engle–Granger (EG) and augmented Engle–Granger (AEG) tests. However, 

several software packages now present these critical values along with other outputs. 
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Let us illustrate these tests. We first regressed PCE on PDI and obtained the following 

regression: 

                 

                 PCEt = −171.4412 + 0.9672PDIt 

                    t = (−7.4808) (119.8712)           ….   (3) 

                   R2 = 0.9940 d = 0.5316 

 

Since PCE and PDI are individually nonstationary, there is the possibility that this regression is 

spurious. But when we performed a unit root test on the residuals obtained from (3), we 

obtained the following results: 

 

                      ut ˆ = −0.2753 ˆut−1 

                      t = (−3.7791) ……………….                (4) 

                    R2 = 0.1422 d = 2.2775 

The Engle–Granger 1 percent critical τ value is −2.5899. Since the computedτ (= t) value is 

much more negative than this, our conclusion is that  the residuals from the regression of PCE 

on PDI are I(0); that is, they are stationary. Hence, (3) is a cointegrating regression and this 

regression is not spurious, even though individually the two variables are nonstationary. One 

can call (3) the static or long run consumption function and interpret its parameters as long run 

parameters. Thus, 0.9672 represents the long-run, or equilibrium, marginal propensity to 

consumer (MPC).  

2.5 COINTEGRATING REGRESSION DURBIN–WATSON (CRDW) TEST: 
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An alternative, and quicker, method of finding out whether PCE and PDI are cointegrated is the 

CRDW test, whose critical values were first provided by Sargan and Bhargava. In CRDW we 

use the Durbin–Watson d obtained from the cointegrating regression, such as d = 0.5316 given 

in (3). But now the null hypothesis is that d = 0 rather than the standard d = 2. This is because  

we observed that d ≈ 2(1− ˆρ), so if there is to be a unit root, the estimated ρ will be about 1, 

which implies that d will be about zero. On the basis of 10,000 simulations formed from 100 

observations each, the 1, 5, and 10 percent critical values to test the hypothesis that the true d = 

0 are 0.511, 0.386, and 0.322, respectively. Thus, if the computed d value is smaller than, say, 

0.511, we reject the null hypothesis of cointegration at the 1 percent level. In our example, the 

value of 0.5316 is above this critical value, suggesting that PCE and PDI are cointegrated, thus 

reinforcing the finding on the basis of the EG test. To sum up, our conclusion, based on both the 

EG and CRDW tests, is that PCE and PDI are cointegrated. Although they individually exhibit 

random walks, there seems to be a stable long-run relationship between them; they will not 

wander away from each other. 

2.6 COINTEGRATION AND ERROR CORRECTION MECHANISM (ECM): 

We just showed that PCE and PDI are cointegrated; that is, there is a longterm, or equilibrium, 

relationship between the two. Of course, in the short run there may be disequilibrium. 

Therefore, one can treat the error term in 

(2) as the “equilibrium error.” And we can use this error term to tie the short-run behavior of 

PCE to its long-run value. The error correction mechanism (ECM) first used by Sargan  and 

later popularized by Engle and Granger corrects for disequilibrium. An important theorem, 

known as the Granger representation theorem, states that if two variables Y and X are 

cointegrated, then the relationship between the two can be expressed as ECM. To see what this 

means, let us revert to our PCE–PDI example. Now consider the following model: 

                 

       PCEt = α0 + α1_PDIt + α2ut−1 + εt ……. (5) 
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where  as usual denotes the first difference operator, εt is a random error term, and ut−1 = 

(PCEt−1 − β1 − β2PDIt−1), that is, the one-period lagged value of the error from the 

cointegrating regression (1). 

ECM equation (5) states that _PCE depends on  PDI and also on the equilibrium error term.47 If 

the latter is nonzero, then the model is out of equilibrium. Suppose  PDI is zero and ut−1 is 

positive. This means PCEt−1 is 

too high to be in equilibrium, that is, PCEt−1 is above its equilibrium value of (α0 + α1PDIt−1). 

Since α2 is expected to be negative, the term α2ut−1 is negative 

and, therefore,_PCEt will be negative to restore the equilibrium. That is, if PCEt is above its 

equilibrium value, it will start falling in the next period to correct the equilibrium error; hence 

the name ECM. By the same token, if ut−1 is negative (i.e., PCE is below its equilibrium value), 

α2ut−1 will be positive, which will cause _CPEt to be positive, leading PCEt to rise in period t. 

Thus, the absolute value of α2 decides how quickly the equilibrium is restored. In practice, we 

estimate ut−1 by ˆut−1 = (PCEt − ˆ β1 − ˆ β2PDIt). Returning to our illustrative example, the 

empirical counterpart of 

(5) is: 

            PCEt = 11.6918 + 0.2906_PDIt − 0.0867 ˆut−1 

              t = (5.3249) (4.1717) (−1.6003) ………..(6) 

              R2 = 0.1717 d = 1.9233 

 

Statistically, the equilibrium error term is zero, suggesting that PCE adjusts to changes in PDI in 

the same time period. As (6) shows, short-run changes in PDI have a positive impact on short-

run changes in personal consumption. One can interpret 0.2906 as the short-run marginal 
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propensity to consume (MPC); the long-run MPC is given by the estimated (static)equilibrium 

relation (3) as 0.9672.  

2.7 SUMMARY AND CONCLUSIONS: 

 

Regression of one time series variable on one or more time series variables often can give 

nonsensical or spurious results. This phenomenon is known as spurious regression. One way to 

guard against it is to find out if the time series are cointegrated. Cointegration means that 

despite being individually nonstationary, a linear combination of two or more time series can be 

stationary. The EG, AEG, and CRDW tests can be used to find out if two or more time series 

are cointegrated.  Cointegration of two (or more) time series suggests that there is a long-run, or 

equilibrium, relationship between them.  The error correction mechanism (ECM) developed 

by Engle and Granger is a means of reconciling the short-run behavior of an economic variable 

with its long-run behavior. The field of time series econometrics is evolving. The established 

results and tests are in some cases tentative and a lot more work remains. An important question 

that needs an answer is why some economic time series are stationary and some are 

nonstationary. 

2.8 LETS SUM  IT UP: 

This modelling framework is a distinct extension of the regression modeling where this 

discussion began. Cointegrated relationships and equilibrium relationships form the basis the 

timeseries counterpart to regression relationships. But, in this case, it is not the conditional 

mean as such that is of interest. Here, both the long-run equilibrium and short-run relationships 

around trends are of interest and are studied in the data. 

2.9 EXCERCISES: 

Q1. Find the autocorrelations and partial autocorrelations for the MA(2) process 

           εt = vt − θ1vt−1 − θ2vt−2. 
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Q2. What are Engle–Granger (EG) and augmented EG tests? 

Q3.  What is the meaning of cointegration? 

Q4.  What is the difference, if any, between tests of unit roots and tests of cointegration? 

Q5.  What is spurious regression? 

Q6. What is the connection between cointegration and spurious regression? 

Q7. Descricbe Cointegration and Error correction mechanism (ECM)? 

. 2.10 Suggested  Reading / References: 

1. Baltagi, B.H.(1998). Econometrics, Springer,  New York. 

2. Chow,G.C.(1983). Econometrics,  McGraw Hill, New York. 

3. Goldberger, A.S.(1998). Introductory Econometrics, Harvard University Press, Cambridge, 

Mass. 

4. Green, W.(2000). Econometrics, Prentice Hall of India, New Delhi. 

5. Gujarati, D.N.(1995). Basic Econometrics. McGraw Hill, New Delhi. 

6. Koutsoyiannis,A.(1977). Theory of  Econometrics(2nd Esdn.). The Macmillan Press Ltd. 

London. 

7. Maddala, G.S.(1997). Econometrics, McGraw Hill; New York. 
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3.1 INTRODUCTION: 

In discussing the nature of the unit root process,  we noted that a random walk process may 

have no drift, or it may have drift or it may have both deterministic and stochastic trends. To 

allow for the various possibilities, the DF test is estimated in three different forms, that is, under 

three different null hypotheses. 

Yt is a random walk:                       Yt = δYt−1 + ut                  (2) 

Yt is a random walk with drift:      Yt = β1 + δYt−1 + ut          (4) 

around a stochastic trend:              Yt = β1 + β2t + δYt−1 + ut (5) 

 

where t is the time or trend variable. In each case, the null hypothesis is that δ = 0; that is, there 

is a unit root—the time series is nonstationary. The alternative hypothesis is that δ is less than 

zero; that is, the time series is stationary. If the null hypothesis is rejected, it means that Yt is a 

stationary time series with zero mean in the case of (2), that Yt is stationary with a nonzero 

mean [= β1/(1 − ρ)] in the case of (4), and that Yt is stationary around a deterministic trend in 

(5). It is extremely important to note that the critical values of the tau test to test the hypothesis 

that δ = 0, are different for each of the preceding three specifications of the DF test. Moreover, 

if, say, specification (4) is correct, but we estimate (2), we will be committing a specification 

error, whose consequences. The same is true if we estimate (4) rather than the true (5). Of 

course, there is no way of knowing which specification is correct to begin with. Some trial and 

error is inevitable, data mining notwithstanding. The actual estimation procedure is as follows: 

Estimate (2), or (4) by OLS; divide the estimated coefficient of Yt−1 in each case by its standard 

error to compute the (τ) tau statistic; and refer to the DF tables (or any statistical package). If the 

computed absolute value of the tau statistic (|τ |) exceeds the DF or MacKinnon critical tau 

values, we reject the hypothesis that δ = 0, in which case the time series is stationary. On the 

other hand, if the computed |τ | does not exceed the critical tau value, we do not reject the null 



114 
 

hypothesis, in which case the time series is nonstationary. Make sure that you use the 

appropriate critical τ values. 

3.2 OBJECTIVES: 

1.  Understand the concept of non-stationary time series. 

2.  Understand  Random walk model with drift and Random walk model without drift. 

3. Understand the trend stationary process. 

3.3 RANDOM WALK MODEL: 

3.3.1 Non-stationary:- If a time series is not stationary it is called non-stationary time series. 

RWM is a classical example. It is said that asset purchased such as stock purchases follows a 

random walk i.e. they are non- stationary.. 

Two types: 

3.3.1.1 Random walk without drift (i.e. no constant) 

3.3.1.2 Random walk with drift (i.e. a contant term) 

 

3.3.1.1 RANDOM WALK WITHOUT DRIFT: 

Yt -Yt-1 + ut     (1)   Ut = white nose. 

       Yt = RW 

We can write eq. (1) as 

Y1 = Y0 + u1 

Y2 = Y1 + u2 = Y0 + u1 + u2 
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Y3 = Y2 + u3 = Y0 + u1 + u2 + u3 

Yt = Y0 + u1     (2) 

 E(Yt)= E(Y0 + ut) = Y0   (6) 

Var Yt = t2 

RWM without drift is a non stationary stochastic process. 

 

 

Yt = Yt-1 + ut 
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3.3.1.2 RANDOM WALK WITH DRIFT: 

Yt =  + Yt-1 + ut    (1)   = drift parameter 

Yt + Yt-1 = Yt =   + ut   (2) 

     Yt =  upward or downward depending   

     on  being +ve or -ve 

E(Yt) =  Y0 + t     (3) 

Var (Yt) = = t 2   (4) 

RWM with drift mean the variance increasing over time, again violating the condition of (weak) 

stationary. In other word RWM with or root drift is a nonstationary stochastic process the RWM 

is an example of unit root process. 
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3.4 COMMON TREND: 

Consider an example. Suppose that two I (1) variables 

have a linear trend, 

                           

                             y1t = α + βt + ut , 

                             y2t = γ + δt + vt , 

where ut and vt are white noise. A linear combination of y1t and y2t with vector (1, θ) produces 

the new variable, 

                 zt = (α + θγ ) + (β + θδ)t + ut + θvt , 

which, in general, is still I (1). In fact, the only way the zt series can be made stationary is if θ = 

−β/δ. If so, then the effect of combining the two variables linearly is to remove the common 

linear trend, which is the basis of Stock andWatson’s (1988) analysis of the problem. But their 

observation goes an important step beyond this one. The only way that y1t and y2t can be 

cointegrated to begin with is if they have a common trend of some sort. To continue, suppose 

that instead of the linear trend t, the terms on the right-hand side, y1 and y2, are functions of a 

random walk, wt = wt−1 +ηt , where ηt is white noise. 

The analysis is identical. But now suppose that each variable yi t has its own random walk 

component wi t , i = 1, 2. Any linear combination of y1t and y2t must involve both random 

walks. It is clear that they cannot be cointegrated unless, in fact, w1t = w2t . That is, once again, 

they must have a common trend. Finally, suppose that y1t and y2t share two common trends, 

                         y1t = α + βt + λwt + ut , 

                         y2t = γ + δt + πwt + vt . 
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We place no restriction on λ and π. Then, a bit of manipulation will show that it is not possible 

to find a linear combination of y1t and y2t that is cointegrated, even though they share common 

trends. The end result for this example is that if y1t and y2t are cointegrated, then they must 

share exactly one common trend. 

As Stock and Watson determined, the preceding is the crux of the cointegration of economic 

variables. A set of M variables that are cointegrated can be written as a stationary component 

plus linear combinations of a smaller set of common trends. If the cointegrating rank of the 

system is r , then there can be up to M−r linear trends and 

M−r common random walks. [See Hamilton (1994, p. 578).] (The two-variable case is special. 

In a two-variable system, there can be only one common trend in total.) The effect of the 

cointegration is to purge these common trends from the resultant variables. 

3.4.1  TREND: 

If the trend in a time series is completely predictable and not variable, we call it as 

deterministic trend.  

Whereas if it is not predictable, we call it a stochastic trend.  

)...(..........11321 ttt YtY    

T= Time measured chronologically  

Rare random walk  
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Random walk with drift  
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Called as trend stationary process (TSP).  

 

 

3.4.2 PROPERTIES OF INTEGRATED SERIES : 
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Let Yt, Yt & Zt be 3 time  

1) If )()()(~&)(~ 11 IYXZthenIYoIY ttttt  then Zt = (Xt + Yt) = I(1).  

 i.e. Linear combination or sim of stationary and non stationary time  series is 

nonstationary.  

2) If ](d))X(),(~  baZthendIX tt  

 Where a & b are constant.  

 I(o)~)X( tbaZt   

3) )(~&)(~ 21 1dYdIX tt  

 )(~)(& 2t 1x dbyaZ tt   where d1<d2.  

4) If thendIYdIX tt )(~&)(~  

 )(~)( dbYaXZ tt 1  

 d* is generated cq = d  

 dd *  

3.5 SUMMARY AND CONCLUSIONS: 

This lesson has completed  our survey of techniques for the analysis of time-series data. While 

was about extensions of regression modeling to time-series setting, most of the results in this 

Lesson focus on the internal structure of the individual time series, themselves.We began with 

the standard models for time-series processes.While the empirical distinction between, say 

AR(p) and MA(q) series may seem ad hoc, the word decomposition assures that with enough 

care, a variety of models can be used to analyze a time series. This lesson described what is 

arguably the fundamental tool of modern macroeconometrics, the tests for nonstationarity. 
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3.6 LETS SUM IT UP: 

In the last we conclude that if a time series is not stationary it is called non-stationary time 

series. Random Walk Model  is a classical example. And further if two I (1) variables are 

cointegrated, then some linear combination of them is I (0). Intuition should suggest that the 

linear combination does not mysteriously create a well-behaved new variable; rather, something 

present in the original variables must be missing from the aggregated one.  

3.7 EXCERCISES: 

Q1. What is pure random walk? 

Q.2  What is trend? 

Q.3. What is random walk with drift? 

Q4. Describe the various properties of Integrated Series? 

Q5. What do you mean by trend stationary process? 

. 3.8  Suggested  Reading / References: 

 

1. Baltagi, B.H.(1998). Econometrics, Springer,  New York. 

2. Chow,G.C.(1983). Econometrics,  McGraw Hill, New York. 

3. Goldberger, A.S.(1998). Introductory Econometrics, Harvard University Press, Cambridge, 

Mass. 

4. Green, W.(2000). Econometrics, Prentice Hall of India, New Delhi. 

5. Gujarati, D.N.(1995). Basic Econometrics. McGraw Hill, New Delhi. 
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6. Koutsoyiannis,A.(1977). Theory of  Econometrics(2nd Esdn.). The Macmillan Press Ltd. 

London. 

7. Maddala, G.S.(1997). Econometrics, McGraw Hill; New York. 
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4.1 INTRODUCTION: 

Forecasting is an important part of econometric analysis, for some people probably the most 

important. How do we forecast economic variables, such as GDP, inflation, exchange rates, 

stock prices, unemployment rates, and myriad other economic variables? In this lesson we 

discuss two methods of forecasting that have become quite popular: (1) autoregressive 

integrated moving average (ARIMA), popularly known as the Box–Jenkins methodology,1 

and (2) vector autoregression (VAR). 

In this lesson we also discuss the special problems involved in forecasting prices of financial 

assets, such as stock prices and exchange rates. These asset prices are characterized by the 

phenomenon known as volatility clustering, that is, periods in which they exhibit wide swings 

for an extended time period followed by a period of comparative tranquility. One only has to 

look at the Dow Jones Index in the recent past. The so-called autoregressive conditional 

heteroscedasticity (ARCH) or generalized autoregressive conditional heteroscedasticity 

(GARCH) models can capture such volatility clustering. 

 The topic of economic forecasting is vast, and specialized books have been written on this 

subject. Our objective in this lesson is to give the reader just a glimpse of this subject. The 

interested reader may consult the references for further study. Fortunately, most modern 

econometric packages have user-friendly introductions to several techniques discussed in this 

lesson The linkage between this lesson and the previous lesson is that the forecasting methods 

discussed below assume that the underlying time series are stationary or they can be made 

stationary with appropriate transformations. As we progress through this lesson, you will see the 

use of the several concepts that we introduced in the last lesson 

4.2 OBJECTIVES: 

1. The key objective is to understand the economic forecasting based on time series data. 

2. To understand the Vector Autoregression(VAR). 
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3. To understand the Autoregressive conditional heteroscedasticity(ARCH) and Generalised 

autoregressive conditioinal heteroscedasticity(GARCH). 

4.3 VECTOR AUTOREGRESSION (VAR): 

According to Sims, if there is true simultaneity among a set of variables, they should all be 

treated on an equal footing; there should not be any a priori distinction between endogenous and 

exogenous variables. It is in this spirit that Sims developed his VAR model. 

4.3.1 Estimation or VAR: 

Returning to the Canadian money interest rate, we saw that when we introduced six lags of each 

variable as regressors, we could not reject the hypothesis that there was bilateral causality 

between money (M1) and interest rate, R (90-day corporate interest rate). That is, M1 affects R 

and R affects M1. These kinds of situations are ideally suited for the application of VAR. 

To explain how a VAR is estimated, we will continue with the preceding example. For now we 

assume that each equation contains k lag values of M(as measured by M1) and R. In this case, 

one can estimate each of the following equations by OLS. 

…….1,2 

  

where the u’s are the stochastic error terms, called impulses or innovations or shocks in the 

language of VAR. 

4.4  SOME PROBLEMS WITH VAR MODELING: 

The advocates of VAR emphasize these virtues of the method:  
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(1) The method is simple; one does not have to worry about determining which variables are 

endogenous and which ones exogenous. All variables in VAR are endogenous.  

(2) Estimation is simple; that is, the usual OLS method can be applied to each equation 

separately.  

(3) The forecasts obtained by this method are in many cases better than those obtained from the 

more complex simultaneous-equation models. 

But the critics of VAR modeling point out the following problems: 

1.  Unlike simultaneous-equation models, a VAR model is a theoretic because it uses less 

prior information. Recall that in simultaneous-equation models exclusion or inclusion of 

certain variables plays a crucial role in the identification of the model. 

2.  Because of its emphasis on forecasting, VAR models are less suited for policy analysis. 

3.  The biggest practical challenge in VAR modeling is to choose the appropriate lag length. 

Suppose you have a three-variable VAR model and you decide to include eight lags of 

each variable in each equation. You will have 24 lagged parameters in each equation plus 

the constant term, for a total of 25 parameters. Unless the sample size is large, estimating 

that many parameters will consume a lot of degrees of freedom with all the problems 

associated with that. 

4.  Strictly speaking, in an m-variable VAR model, all the m variables should be (jointly) 

stationary. If that is not the case, we will have to transform the data appropriately (e.g., 

by first-differencing). As Harvey notes, the results from the transformed data may be 

unsatisfactory. He further notes that “The usual approach adopted by VAR aficionados is 

therefore to work in levels, even if some of these series are nonstationary. In this case, it 

is important to recognize the effect of unit roots on the distribution of estimators.”Worse 

yet, if the model contains a mix of I(0) and I(1) variables, that is, a mix of stationary and 

nonstationary variables, transforming the data will not be easy. 



129 
 

5.  Since the individual coefficients in the estimated VAR models are often difficult to 

interpret, the practitioners of this technique often estimate the so-called impulse response 

function (IRF). The IRF traces out the response of the dependent variable in the VAR 

system to shocks in the errorterms, such as u1 and u2 in Eqs. (.1) and (2). Suppose u1 in 

the M1equation increases by a value of one standard deviation. Such a shock or change 

will change M1 in the current as well as future periods. But since M1 appears in the R 

regression, the change in u1 will also have an impact on R. Similarly, a change of one 

standard deviation in u2 of the R equation will have an impact on M1. The IRF traces out 

the impact of such shocks for several periods in the future. Although the utility of such 

IRF analysis has been questioned by researchers, it is the centerpiece of VAR analysis. 

4.5 MEASURING VOLATILITY IN FINANCIAL TIME SERIES: THE ARCH AND 

GARCH MODELS 

As noted in the introduction to this lesson, financial time series, such as stock prices, exchange 

rates, inflation rates, etc. often exhibit the phenomenon of volatility clustering, that is, periods 

in which their prices show wide swings for an extended time period followed by periods in 

which there is relative calm. As Philip Franses notes: Since such [financial time series] data 

reflect the result of trading among buyers and sellers at, for example, stock markets, various 

sources of news and other exogenous economic events may have an impact on the time series 

pattern of asset prices. Given that news can lead to various interpretations, and also given that 

specific economic events like an oil crisis can last for some time, we often observe that large 

positive and large negative observations in financial time series tend to appear in clusters.  

Knowledge of volatility is of crucial importance in many areas. For example, considerable 

macroeconometric work has been done in studying the variability of inflation over time. For 

some decision makers, inflation in itself may not be bad, but its variability is bad because it 

makes financial planning difficult.  

The same is true of importers, exporters, and traders in foreign exchange markets, for variability 

in the exchange rates means huge losses or profits. Investors in the stock market are obviously 

interested in the volatility of stock prices, for high volatility could mean huge losses or gains 
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and hence greater uncertainty. In volatile markets it is difficult for companies to raise capital in 

the capital markets.  

How do we model financial time series that may experience such volatility? For example, how 

do we model times series of stock prices, exchange rates, inflation, etc.? A characteristic of 

most of these financial time series is that in their level form they are random walks; that is, they 

are nonstationary. On the other hand, in the first difference form, they are generally stationary, 

as we saw in the case of GDP series in the previous lesson even though GDP is not strictly a 

financial time series. 

Therefore, instead of modeling the levels of financial time series, why not model their first 

differences? But these first differences often exhibit wide swings, or volatility, suggesting that 

the variance of financial time series varies over time. How can we model such “varying 

variance”? This is where the so-called autoregressive conditional heteroscedasticity (ARCH) 

model originally developed by Engle comes in handy. 

4.5.1 A Note on the GARCH Model: 

Since its “discovery” in 1982, ARCH modeling has become a growth industry, with all kinds of 

variations on the original model. One that has become popular is the generalized 

autoregressive conditional heteroscedasticity (GARCH) model, originally proposed by 

Bollerslev. The simplest GARCH model is the GARCH(1, 1) model, which can be written as: 

 

which says that the conditional variance of u at time t depends not only on the squared error 

term in the previous time period [as in ARCH(1)] but also on its conditional variance in the 

previous time period. This model can be generalized to a GARCH(p, q) model in which there 

are p lagged terms of the squared error term and q terms of the lagged conditional variances. 

We will not pursue the technical details of these models, as they are involved, except to point 

out that a GARCH(1, 1) model is equivalent to an ARCH(2) model and a GARCH(p, q) model 

is equivalent to an ARCH(p+ q) model. 
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For our U.S./U.K. exchange rate and NYSE stock return examples, we have already stated that 

an ARCH(2) model was not significant, suggesting that perhaps a GARCH(1, 1) model is not 

appropriate in these cases. 

4.6  SUMMARY AND CONCLUSIONS: 

1. Box–Jenkins and VAR approaches to economic forecasting are alternatives to traditional 

single- and simultaneous-equation models. 

2.  To forecast the values of a time series, the basic Box–Jenkins strategy is as follows: 

a.  First examine the series for stationarity. This step can be done by computing the 

autocorrelation function (ACF) and the partial autocorrelation function (PACF) or by a 

formal unit root analysis. The correlograms associated with ACF and PACF are often 

good visual diagnostic tools. 

b.  If the time series is not stationary, difference it one or more times to achieve stationarity. 

c.  The ACF and PACF of the stationary time series are then computed to find out if the 

series is purely autoregressive or purely of the moving average type or a mixture of the 

two. From broad guidelines given in Table 22.1 one can then determine the values of p 

and q in the ARMA process to be fitted. At this stage the chosen ARMA(p, q) model is 

tentative. 

d.  The tentative model is then estimated. 

e.  The residuals from this tentative model are examined to find out if they are white noise. 

If they are, the tentative model is probably a good approximation to the underlying 

stochastic process. If they are not, the process is started all over again. Therefore, the 

Box–Jenkins method is iterative. 

f.  The model finally selected can be used for forecasting. 
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3.  The VAR approach to forecasting considers several time series at a time. The 

distinguishing features of VAR are as follows: 

a.  It is a truly simultaneous system in that all variables are regarded as endogenous. 

b.  In VAR modeling the value of a variable is expressed as a linear function of the past, or 

lagged, values of that variable and all other variables included in the model. 

c.  If each equation contains the same number of lagged variables in the system, it can be 

estimated by OLS without resorting to any systems method, such as two-stage least 

squares (2SLS) or seemingly unrelated regressions (SURE). 

d.  This simplicity of VAR modeling may be its drawback. In view of the limited number of 

observations that are generally available in most economic analyses, introduction of 

several lags of each variable can consume a lot of degrees of freedom. 

e.  If there are several lags in each equation, it is not always easy to interpret each 

coefficient, especially if the signs of the coefficients alternate. For this reason one 

examines the impulse response function (IRF) in VAR modeling to find out how the 

dependent variable responds to a shock administered to one or more equations in the 

system. 

f.  There is considerable debate and controversy about the superiority of the various 

forecasting methods. Single-equation, simultaneous-equation, Box–Jenkins, and VAR 

methods of forecasting have their admirers as well as detractors. All one can say is that 

there is no single method that will suit all situations. If that were the case, there would be 

no need for discussing the various alternatives. One thing is sure: The Box–Jenkins and 

VAR methodologies have now become an integral part of econometrics. 

4.  We also considered in this lesson a special class of models, ARCH and GARCH, which 

are especially useful in analyzing financial time series, such as stock prices, inflation 

rates, and exchange rates. A distinguishing feature of these models is that the error 

variance may be correlated over time because of the phenomenon of volatility clustering. 
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In this connection we also pointed out that in many cases a significant Durbin–Watson d 

may in fact be due to the ARCH or GARCH effect. 

4.7 LETS  SUM IT UP: 

This lesson examined different  model of stochastic volatility, the  VAR,ARCH and  GARCH 

model. These models has proved especially useful for analyzing  financial data such as 

exchange rates, inflation, and market returns. 

 4.8 EXCERCISES: 

Q.1. What is VAR (vector auto regression)? 

Q2. What is Autoregressive conditional heteroscedasticity(ARCH)? 

Q3. Explain the Generalised Autoregressive conditional heteroscedasticity(GARCH)? 

Q4. Explain the Box-Jenkins Methodology? 

Q5. Elaborate the estimation process of VAR model? 

 4.9 Suggested  Reading / References: 

1. Baltagi, B.H.(1998). Econometrics, Springer,  New York. 

2. Chow,G.C.(1983). Econometrics,  McGraw Hill, New York. 

3. Goldberger, A.S.(1998). Introductory Econometrics, Harvard University Press, Cambridge, 

Mass. 

4. Green, W.(2000). Econometrics, Prentice Hall of India, New Delhi. 

5. Gujarati, D.N.(1995). Basic Econometrics. McGraw Hill, New Delhi. 

6. Koutsoyiannis,A.(1977). Theory of  Econometrics(2nd Esdn.). The Macmillan Press Ltd. 

London. 
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7. Maddala, G.S.(1997). Econometrics, McGraw Hill; New York.  
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4.1 INTRODUCTION: 

There are three  types of data that are generally available for empirical analysis, namely, time 

series, cross section, and panel. In time series data we observe the values of one or more 

variables over a period of time (e.g., GDP for several quarters or years). In cross-section data, 

values of one or more variables are collected for several sample units, or entities, at the same 

point in time (e.g., crime rates for 50 states in the United States for a given year). In panel data 

the same cross-sectional unit (say a family or a firm or a state) is surveyed over time. In short, 

panel data have space as well as time dimensions. There are other names for panel data, such as 

pooled data (pooling of time series and cross-sectional observations), combination of time 

series and cross-section data, micropanel data, longitudinal data (a study over time of a 

variable or group of subjects), event history analysis (e.g., studying the movement over time of 

subjects through successive states or conditions), cohort analysis (e.g., following the career 

path of 1965 graduates of a business school). Although there are subtle variations, all these 

names essentially connote movement over time of cross-sectional units.We will therefore use 

the term panel data in a generic sense to include one or more of these terms. And we will call 

regression models based on such data panel data regression models. Panel data are now being 

increasingly used in economic research. Some of the well-known panel data sets are: 

1. The Panel Study of Income Dynamics (PSID) conducted by the Institute of Social Research 

at the University of Michigan. Started in 1968, each year the Institute collects data on some 

5000 families about various socioeconomic and demographic variables. 

2. The Bureau of the Census of the Department of Commerce conducts a survey similar to 

PSID, called the Survey of Income and Program Participation (SIPP). Four times a year, the 

respondents are interviewed about their economic condition. 

There are also many other surveys that are conducted by various governmental agencies. At the 

outset a warning is in order. The topic of panel data regressions is vast, and some of the 

mathematics and statistics involved is quite complicated. 
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We only hope to touch on some of the essentials of the panel data regression models, leaving 

the details for the references. But be forewarned that some of these references are highly 

technical. Fortunately, user-friendly software packages such as Limdep, PcGive, SAS, STATA, 

Shazam, and Eviews, among others, have made the task of actually implementing panel data 

regressions quite easy. 

1.2 OBJECTIVES:  

Our objective is to get familiar with all these types of data: 

1. Panel data 

2. Pooling data 

3. The chow test 

4. Difference with more than two time periods  

1.3 PANEL DATA : 

In statistics and econometrics, the term panel data refers to multi-dimensional data frequently 

involving measurements over time. Panel data contain observations of multiple phenomena 

obtained over multiple time periods for the same firms or individuals. In biostatistics, the term 

longitudinal data is often used instead, wherein a subject or cluster constitutes a panel member 

or individual in a longitudinal study. 

Time series and cross-sectional data are special cases of panel data that are in one dimension 

only (one panel member or individual for the former, one time point for the latter). 

 

 

 

 

 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Econometrics
http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/Biostatistics
http://en.wikipedia.org/wiki/Longitudinal_study
http://en.wikipedia.org/wiki/Time_series
http://en.wikipedia.org/wiki/Cross-sectional_data
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Example 

balanced panel: 
 

unbalanced panel: 

 

 

 

In the example above, two data sets with a two-dimensional panel structure are shown, although 

the second data set might be a three-dimensional structure since it has three people. Individual 

characteristics (income, age, sex. education) are collected for different persons and different 

years. In the left data set two persons (1, 2) are observed over three years (2001, 2002, 2003). 

Because each person is observed every year, the left-hand data set is called a balanced panel, 

whereas the data set on the right hand is called an unbalanced panel, since Person 1 is not 

observed in year 2003 and Person 3 is not observed in 2003 or 2001. 

There are other names for panel data, such as pooled data(pooling of time series and cross-

sectional observations), combination of time series and cross-section data, micro panel data, 

longitudinal data(a study over time of a variable or group of subjects), event history 

analysis(e.g., studying the movement over time of subjects through successive states or 

conditions), cohort analysis(e.g., following the career path of 1965 graduates of a business 

school). Although there are subtle variations, all these names essentially connote movement 

over time of cross-sectional units. We will therefore use the term panel data in a generic sense 

to include one or more of these terms. And we will call regression models based on such data 

panel data regression models. 

Time series data we obtain from the value of one or more variable over a period of time (GDP 

for several quarter of year.  

Cross Section: Value of one or more valuable are collected for several sample units of at same 

pt. in time (Crime record of 50 states in last one year).  
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Panel dates the same cross sectional unit is surveyed over time. In short, panel data hence space 

as well as time dimensions.  

Other name for panel data such as pooled data (pooting of time series or cross section 

observation)., micropanel data, longitudinal detail, evens history available.  

Well know panel data sets are:  

1. Panel study of income dynamics.  

2. Survey of Income and Program Participation (SIPP).  

 

1.4 POOLING DATA : 

Relationship between the dependent variable and at least some of the independent variable 

remains constant over time.  

1.5 CHOW TEST : 

Chow test, which is simply on F test can be used to determine whether a multiplier regression 

function differs across two groups.  

It can also be completes for more than two periods. Just as in the two period case, it is usually 

more interesting to allow the intercepts to change over time and then test whether the slope 

coefficients have changed overtime.  

Chow test for two periods by intersecting each variable with a year dummy for one of the two 

years and testing for joint significance of the year dummy and all of the interaction terms.  

We can test the constancy of slope coefficient generally by intersecting all of the perior and 

dommirs (except that definincy the box group) with one several or all of the explanatory 

variables and test the joins significance of the intersection terms.  
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1.6 DIFFERENCE WITH MORE THAN TWO TIME PERIODS : 

We can also use differencing with more than two time periods.  

Example.  

Suppose having N individuals and T=3 the time period for each individual.  

A general fixed effects model is  

 ititkkttit uuyddY   ............x32 itl1321  ………………1 

for t = 1, 2 & 3.  3N)  observal of no. total (  

 

We have  

 Included two period dummies in addition to the intercept. B’cor its good idea to allow a 

separate intercept for each time period, especially when we have a small no. of them.  

 Basic period is t=1  

 Intercept for 2nd time period is 21   & so on.  

 Primarily interested in k &, 21  

 If unobserved effect ai is correlated with any of the explanatory variable then use pooled 

OLS on the 3 years of dated results in biased and inconsistent estimates.  

 Idiosyncratic error are uncorrelated & explanation variables.  

 Cov (Xitj, 0 )is  for all t, js&  ……………2 

 Explanatory variable are strictly exogenous after we take out the unobserved effect, ai.  

Eq. (2) Rules out cases where future explanatory variables react to current changes i.d the 

idiosyncratic error. As must be the case of Xitj is a lagged dependent variable.  
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 If ai is correlated with Xitj then Xitj will be correlated with the composite error, Vit = ai + 

itu (under 2).  

 We can eliminate ai by differencing adjacent periorts.  

 In T=3 case, we subtract time period one from time period two and time period two from 

time period three.  

)3.......(......32 132 ititkitttit vxkxddy    

 We have no. differenced eq. for t=1  

 3 eq. represents two time period for each individual in the sample.  

 If this eq. satisfies the classical linear model assumptions the pooled OLS gives unbiased 

estimators.  

 The important requirement for OLS to be consistent is that  it  is uncorrelated with 

itjX  for all J & t = 2 & 3.  

 This is the natural extension for 2TP cone  

 d2t & d3t are year dummies  

t = 2, Odd tt  312 &  for t = 3, 1312  tt dd &  

3 eq. does not contain any intercept.  

It is better to estimate the 1st differenced eq. with an intercept and a single time period dummy, 

usually for the time period.  

)....(..........43 113 ititkkitikittoit XXxdy   

For t = 2 & 3  

 j  are identical in either formulation.  

 With more than 3 period, things are similar.  

 If we have same T time period for each of N cross – sectional units, we say at the data 

set is balanced panel.  
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 T is small relative to N, we should include a dummy variable for each TP to a/c per 

secular changes that are not being modeled.  

 After 1st differencing, the eq. both takes.  

).....(....,............. 532x43 iti143 TtXdTddy ititkkttttoit   

 We have T-1 J.P on each unit i for the 1st differential eq.  

 The total no. of observation is N(T-1).  

 Its is simple to estimate eq (5) by pooled OLS, provided the observations have been 

properly organized and the differencing carefully done.  

 When doing 2TP, we assure that itu  is uncorrelated over time for usual standard errors 

and test statisticatic to be valid.  

1.7 SUMMARY AND CONCLUSIONS: 

Since panel data relate to individuals, firms, states, countries, etc., over time, there is bound to 

be heterogeneity in these units. The techniques of panel data estimation can take such 

heterogeneity explicitly into account by allowing for individual-specific variables, as we shall 

show shortly. We use the term individual in a generic sense to include microunits such as 

individuals, firms, states, and countries. 

 By combining time series of cross-section observations, panel data give “more informative 

data, more variability, less collinearity among variables, more degrees of freedom and more 

efficiency.” By studying the repeated cross section of observations, panel data are better suited 

to study the dynamics of change. Spells of unemployment, job turnover, and labor mobility are 

better studied with panel data.  Panel data can better detect and measure effects that simply 

cannot be observed in pure cross-section or pure time series data. For example, the effects of 

minimum wage laws on employment and earnings can be better studied if we include successive 

waves of minimum wage increases in the federal and/or state minimum wages.  Panel data 

enables us to study more complicated behavioral models. 
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For example, phenomena such as economies of scale and technological change can be better 

handled by panel data than by pure cross-section or pure time series data.  By making data 

available for several thousand units, panel data can minimize the bias that might result if we 

aggregate individuals or firms into broad aggregates. 

In short, panel data can enrich empirical analysis in ways that may not be possible if we use 

only cross-section or time series data. This is not to suggest that there are no problems with 

panel data modeling. 

1.8 LETS SUM IT UP: 

 

In the conclusion we can say that Panel regression models are based on panel data. Panel data 

consist of observations on the same cross-sectional, or individual, units over several time 

periods.There are several advantages to using panel data. First, they increase the sample size 

considerably. Second, by studying repeated cross-section observations, panel data are better 

suited to study the dynamics of change. Third, panel data enable us to study more complicated 

behavioral models.Despite their substantial advantages, panel data pose several estimation and 

inference problems. Since such data involve both cross-section and time dimensions, problems 

that plague cross-sectional data (e.g., heteroscedasticity) and time series data (e.g., 

autocorrelation) need to addressed. There are some additional problems, such as cross-

correlation in individual units at the same point in time. 

 

1.9 EXCERCISES: 

Q1. Explain chow test. 

Q2. What do you mean by  panel data? 

Q3. Distinguish between panel data and pooling data? 
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Q4. What are the various types of data? 

Q5. Give any  three examples of panel data? 

Q6. Distinguish between balanced and unbalanced panel? 

Q7. What are the special features of (a) cross-section data, (b) time series data, and (c) panel 

data? 
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2.1 INTRODUCTION: 

The basic framework for this discussion is a regression model of the form 

                          yi t = xi tβ + zi α + εi t . (1) 

 

There are K regressors in xi t , not including a constant term. The heterogeneity, or individual 

effect is zi α where zi contains a constant term and a set of individual orgroup specific 

variables, which may be observed, such as race, sex, location, and so on or unobserved, such as 

family specific characteristics, individual heterogeneity in skill or preferences, and so on, all of 

which are taken to be constant over time t. As it stands, this model is a classical regression 

model. If zi is observed for all individuals, then the entire model can be treated as an ordinary 

linear model and fit by least squares. The various cases we will consider are: 

 

1. Pooled Regression: If zi contains only a constant term, then ordinary least squares provides 

consistent and efficient estimates of the common α and the slope vector β. 

 

2. Fixed Effects: If zi is unobserved, but correlated with xi t , then the least squares estimator of 

β is biased and inconsistent as a consequence of an omitted variable. However, in this instance, 

the model 

 

                             yi t = xi tβ + αi + εi t , 
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where αi =zi α, embodies all the observable effects and specifies an estimable conditional mean. 

This fixed effects approach takes αi to be a group-specific constant term in the regression 

model. It should be noted that the term “fixed” as used here indicates that the term does not vary 

over time, not that it is nonstochastic, which need not be the case. 

 

3. Random Effects: If the unobserved individual heterogeneity, however formulated, can be 

assumed to be uncorrelated with the included variables, then the model may be formulated as 

      

       yi t = xi tβ + E[ziα] +ziα − E[ziα]+ εi t = xi tβ + α + ui + εi t , 

 

that is, as a linear regression model with a compound disturbance that may be consistently, 

albeit inefficiently, estimated by least squares. This random effects approach specifies that ui is 

a group specific random element, similar to εi t except that for each group, there is but a single 

draw that enters the regression identically in each period. 

Again, the crucial distinction between these two cases is whether the unobserved individual 

effect embodies elements that are correlated with the regressors in the model, not whether these 

effects are stochastic or not.We will examine this basic formulation, then consider an extension 

to a dynamic model. 

 

 

2.2 OBJECTIVES: 

1. To understand the Fixed Effect Technique. 

2. To get familiar with the Random Effect Approach. 
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2.3 FIXED EFFECT OR FIRST DIFFERENCING: 

First Differencing (FD) is just one of the many ways to eliminate the Fixed Effect (FE), ai. An 

alternative method, which works better under certain assumptions, is called FE transformation.  

Setting aside pooled OLS, we have, seen the competing methods for estimating unobserved 

effect models.  

1. Involves differencing the dates.  

2. Other involves time demeaning.  

Under following cases we will find which one to use:  

 

Case 1: When T=2, the FE & FD estimates, as well as all test statistically are identical in this 

case no matter which one to use.  

Between FE and FD we require the we estimate the same model in each case.  

Natural to include an intercept in the FD eq. C actually the intercept for 2nd time period in the 

original model writers for 2 Time period.  

FE must include a Dummy variable for the 2nd Time period in order to be identical to the FD 

estimates that include an intercept.  

FD with T=2, has the advantage of being straight – forward in any econometrics and statistical 

purchase.  

Case-2:  FDFET &&3 estimates are not same.  

Both are unbiased.  

We can’t use unbiased as a criterion under Assumption.  
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Both are consistent. (With T fixed as N - )  

For large N and small T, the choose between FE & FD hinges on the relative efficiency of the 

estimator and determined by the serial correlation in the idiosyncratic error, itu .  

When itu are serially uncorrelated FE is more efficient then FD.  

If Uit follows a random walk i.e. there is very substantial, positive serial correlation their the 

difference itU  is serially uncorrelation, FD is better.  

Case 3: When T is large and especially N is not very large, (Ex T = 30 & N = 2).  

FD & FE estimators can be very sensitive to clinical measurement error in one or more 

explonationary variable.  

Important:  FD does’t depend upon T, while that for the F&E estimator tends to zero at the rate 

1/T.  

It is difficult to choose b/w FE and FD. When they give subsequently different results.  
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2.4 RANDOM EFFECT APPROACH: 

The fixed effects model allows the unobserved individual effects to be correlated with the 

included variables.We then modeled the differences between units strictly as parametric shifts 

of the regression function. This model might be viewed as applying only to the cross-sectional 

units in the study, not to additional ones outside the sample. For example, an intercountry 

comparison may well include the full set of countries for which it is reasonable to assume that 

the model is constant. If the individual effects are strictly uncorrelated with the regressors, then 

it might be appropriate to model the individual specific constant terms as randomly distributed 

across cross-sectional units. This view would be appropriate if we believed that sampled cross-

sectional units were drawn from a large population.  

2.4.1 UNBALANCED PANEL : 

Some panel data sets, especially on individuals or firms however missing years, for it least same 

errors sectional units in the sample. Unbal-pannel.  

We Assume the  

Yit = )1....(..........3322 itititli uXX    

Bli = intestinal of treating as fixed we treat it as random variable.  

)2...(...............,.........2,11 Niili    

(Independent of all variable) ( is a random error  = O, var = 2
E  

Subtracting (2) in (1) we get  

)3..(..........x3x2
x3x2

it3it21

2it3it21

it

itit

ul
uY






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where Wit = i + Uit 

 

2.4.2 Some of the Assumption mode by Random effect model or error component Model: 

1. i  N (0, E
2) 

2. Uit  N (0, U
2 ) 

3. E(1it) = 0 

(No … between Ei & Uit if it will be there middle will be heteroshadastic)  

4. E(1j)= 0 (i  j) 

5. E(Wit)= 0 

6. Var (Wit) E
2  + U

2 . 

Test for Fixed Effect Model is Hausman Test  

Some time its assumption gets violated so it is not a good model to 

study. 

2.5  SUMMARY AND CONCLUSIONS: 

Panel data pose several estimation and inference problems. Since such data involve both cross-

section and time dimensions, problems that plague cross-sectional data (e.g., heteroscedasticity) 

and time series data (e.g., autocorrelation) need to addressed. There are some additional 

problems, such as cross-correlation in individual units at the same point in time. There are 

several estimation techniques to address one or more of these problems. The two most 

prominent are (1) the fixed effects model (FEM) and (2) the random effects model (REM) or 

error components model (ECM). In FEM the intercept in the regression model is allowed to 



153 
 

differ among individuals in recognition of the fact each individual, or crosssectional, unit may 

have some special characteristics of its own. To take into account the differing intercepts, one 

can use dummy variables. The FEM using dummy variables is known as the least-squares 

dummy variable (LSDV) model. FEM is appropriate in situations where the individualspecific 

intercept may be correlated with one or more regressors. A disadvantage of LSDV is that it 

consumes a lot of degrees of freedom when the number of cross-sectional units, N, is very large, 

in which case we will have to introduce N dummies (but suppress the common intercept term). 

An alternative to FEM is ECM. In ECM it is assumed that the intercept of an individual unit is a 

random drawing from a much larger population with a constant mean value. The individual 

intercept is then expressed as a deviation from this constant mean value. One advantage of ECM 

over FEM is that it is economical in degrees of freedom, as we do not have to estimate N cross-

sectional intercepts.We need only to estimate the mean value of the intercept and its 

variance.ECMis appropriate in situations where the (random) intercept of each cross-sectional 

unit is uncorrelated with the regressors. 

 

2.6 LETS SUM IT UP: 

 

The preceding has shown a few of the extensions of the classical model that can be obtained 

when panel data are available. In principle, any of the models we have examined before this 

lesson and all those we will consider later, including the multiple equation models, can be 

extended in the same way. The main advantage, as we noted at the outset, is that with panel 

data, one can formally model the heterogeneity across groups that is typical in microeconomic 

data. 

2.7 EXCERCISES: 

 

Q1. What do you mean by First Differencing? 
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Q2. Explain the Error Components Model( ECM )? 

Q3. What are the various problems which we face in dealing with panel data? 

Q4. Describe the various techniques for the estimation of panel data? 

Q5. W hat do you mean by unbalanced panel? 
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3.1 INTRODUCTION: 

The basic framework for this discussion is a regression model of the form 

                             yi t = xi tβ + ziα + εi t . 

Fixed Effects: If zi is unobserved, but correlated with xi t , then the least squares estimator of β 

is biased and inconsistent as a consequence of an omitted variable. However, in this instance, 

the model 

                          yi t = xi tβ + αi + εi t , 

where αi =ziα, embodies all the observable effects and specifies an estimable conditional mean. 

This fixed effects approach takes αi to be a group-specific constant term in the regression 

model. It should be noted that the term “fixed” as used here indicates that the term does not vary 

over time, not that it is nonstochastic, which need not be the case. 

 

3.2 OBJECTIVES: 

1. To understand the Fixed Effects Approach. 

2. Testing the significance of the group effects. 

3. To understand the fixed time and group effects. 

4. To understand the relationship between unbalanced panels and 

 fixed effects 

3.3 THE FIXED EFFECTS APPROACH 
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 Yit = β1i + β2X2it + β3X3it + uit      (1) 

Estimation of (1) depends on the assumptions we make about the intercept, the slope 

coefficients, and the error term, uit. There are several possibilities: 

1.  Assume that the intercept and slope coefficients are constant across time and space and 

the error term captures differences over time and individuals. 

2.  The slope coefficients are constant but the intercept varies over individuals. 

3.  The slope coefficients are constant but the intercept varies over individuals and time. 

4.  All coefficients (the intercept as well as slope coefficients) vary over individuals. 

5.  The intercept as well as slope coefficients vary over individuals and time. 

 

3.3.1.  All Coefficients Constant across Time and Individuals 

The simplest, and possibly naive, approach is to disregard the space and time dimensions of the 

pooled data and just estimate the usual OLS regression. 

 

3.3.2.  Slope Coefficients Constant but the Intercept Varies across Individuals: The Fixed 

Effects or Least-Squares Dummy Variable (LSDV) Regression Model 

One way to take into account the “individuality” of each company or each cross-sectional unit is 

to let the intercept vary for each company but still assume that the slope coefficients are 

constant across firms. 

Yit = β1i + β2X2it + β3X3it + uit      (2) 
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Notice that we have put the subscript i on the intercept term to suggest that the intercepts of the 

four firms may be different; the differences may be due to special features of each company, 

such as managerial style or managerial philosophy. 

In the literature, model (2) is known as the fixed effects (regression) model (FEM). The term 

“fixed effects” is due to the fact that, although the intercept may differ across individuals (here 

the four companies), each individual’s intercept does not vary over time; that is, it is time 

invariant. Notice that if we were to write the intercept as β1it , it will suggest that the intercept of 

each company or individual is time variant. It may be noted that the FEM given in (2) assumes 

that the (slope) coefficients of the regressors do not vary across individuals or over time. 

How do we actually allow for the (fixed effect) intercept to vary between companies? We can 

easily do that by the dummy variable technique that we learned in Lesson 9, particularly, the 

differential intercept dummies. Therefore, we write (16.3.2) as: 

Yit = α1 + α2D2i + α3D3i + α4D4i + β2X2it + β3X3it + uit   (3) 

where D2i = 1 if the observation belongs to GM, 0 otherwise; D3i = 1 if the observation belongs 

to US, 0 otherwise; and D4i = 1 if the observation belongs to WEST, 0 otherwise. Since we have 

four companies, we have used only three dummies to avoid falling into the dummy-variable 

trap (i.e., the situation of perfect collinearity). Here there is no dummy for GE. In other words, 

α1 represents the intercept of GE and α2, α3, and α4, the differential intercept coefficients, tell by 

how much the intercepts of GM, US, andWESTdiffer from the intercept of GE. In short, GE 

becomes the comparison company. Of course, you are free to choose any company as the 

comparison company. 

Incidentally, if you want explicit intercept values for each company, you can introduce four 

dummy variables provided you run your regression through the origin, that is, drop the common 

intercept in (3); if you donot do this, you will fall into the dummy variable trap. 

Since we are using dummies to estimate the fixed effects, in the literature the model (3) is also 

known as the least-squares dummy variable (LSDV) model. So, the terms fixed effects and 
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LSDV can be used inter changeably. In passing, note that the LSDV model (3) is also known as 

the covariance model and X2 and X3 are known as covariates. 

.4 

3.3.3 Slope Coefficients Constant but the Intercept Varies over Individuals As Well As 

Time 

To consider this possibility, we can combine (3) and (4), as follows: 

Yit = α1 + α2DGMi + α3DUSi + α4DWESTi + λ0 + λ1Dum35+· · · 

+λ19Dum53 + β2X2i + β3X3i + uit      (5) 

When we run this regression, we find the company dummies as well as the coefficients of the X 

are individually statistically significant, but none of the time dummies are.  

The overall conclusion that emerges is that perhaps there is pronounced individual company 

effect but no time effect. In other words, the investment functions for the four companies are the 

same except for their intercepts. In all the cases we have considered, the X variables had a 

strong impact on Y. 

3.3.4.  All Coefficients Vary across Individuals 

Here we assume that the intercepts and the slope coefficients are different for all individual, or 

cross-section, units. This is to say that the investment functions of GE, GM, US, and WEST are 

all different. We can easily extend our LSDV model to take care of this situation. 

 3.4 TESTING THE SIGNIFICANCE OF THE GROUP EFFECTS: 

The t ratio for ai can be used for a test of the hypothesis that αi equals zero. This hypothesis 

about one specific group, however, is typically not useful for testing in this regression context. 

If we are interested in differences across groups, then we can test the hypothesis that the 
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constant terms are all equal with an F test. Under the null hypothesis of equality, the efficient 

estimator is pooled least squares. The F ratio used for this test is 

F(n − 1, nT − n − K) =R2 LSDV − R2 Pooled/(n −  1)/ 1 − R2 LSDV/(nT − n − K)   

                                                                                                                    

where LSDV indicates the dummy variable model and Pooled indicates the pooled or restricted 

model with only a single overall constant term. Alternatively, the model may have been 

estimated with an overall constant and n − 1 dummy variables instead. All other results (i.e., the 

least squares slopes, s2, R2) will be unchanged, but rather than estimate αi , each dummy 

variable coefficient will now be an estimate of αi − α1 

where group “1” is the omitted group. The F test that the coefficients on these n – 1 dummy 

variables are zero is identical to the one above. It is important to keep in mind, however, that 

although the statistical results are the same, the interpretation of the dummy variable 

coefficients in the two formulations is different. 

 

3.5 SUMMARY AND CONCLUSIONS: 

 

Although easy to use, the LSDV model has some problems that need to be borne in mind. 

First, if you introduce too many dummy variables, you will run up against the degrees of 

freedom problem. Suppose , we have 80 observations, but only 55 degrees of freedom—we lose 

3 df for the three company dummies, 19 df for the 19 year dummies, 

2 for the two slope coefficients, and 1 for the common intercept. 

Second, with so many variables in the model, there is always the possibility of multicollinearity, 

which might make precise estimation of one or more parameters difficult. 
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Third, suppose in the FEM (16.3.1) we also include variables such as sex, color, and ethnicity, 

which are time invariant too because an individual’s sex color, or ethnicity does not change over 

time. Hence, the LSDV approach may not be able to identify the impact of such time-invariant 

variables. 

Fourth, we have to think carefully about the error term uit. All the results we have presented so 

far are based on the assumption that the error term follows the classical assumptions, namely, 

uit ∼ N(0, σ2). Since the i index refers to cross-sectional observations and t to time series 

observations, the classical assumption for uit may have to be modified. There are several 

possibilities. 

1. We can assume that the error variance is the same for all crosssection units or we can assume 

that the error variance is heteroscedastic. 

2. For each individual we can assume that there is no autocorrelation over time. Thus, for 

example, we can assume that the error term of the investment function for General Motors is 

nonautocorrelated. Or we could assume that it is autocorrelated, say, of the AR(1) type. 

3. For a given time, it is possible that the error term for General Motors is correlated with the 

error term for, say, U.S. Steel or both U.S. Steel and Westinghouse.7 Or, we could assume that 

there is no such correlation. 

4. We can think of other permutations and combinations of the error term. As you will quickly 

realize, allowing for one or more of these possibilities will make the analysis that much more 

complicated. Space and mathematical demands preclude us from considering all the 

possibilities. A somewhat accessible discussion of the various possibilities can be found in 

Dielman, Sayrs, and Kmenta.8 However, some of the problems may be alleviated if we resort to 

the so-called random effects model, which we discuss next. 

 

 

3.6 LETS SUM IT UP: 
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In last we conclude that in FEM the intercept in the regression model is allowed to differ among 

individuals in recognition of the fact each individual, or crosssectional, unit may have some 

special characteristics of its own. To take into account the differing intercepts, one can use 

dummy variables. The FEM using dummy variables is known as the least-squares dummy 

variable (LSDV) model. FEM is appropriate in situations where the individualspecific intercept 

may be correlated with one or more regressors. A disadvantage of LSDV is that it consumes a 

lot of degrees of freedom when the number of cross-sectional units, N, is very large, in which 

case we will have to introduce N dummies (but suppress the common intercept term). 

3.7 EXCERCISES: 

 

Q.1. Discuss the test and other factors which decide whether to go for OLS or fixed effect or 

random effect. 

Q.2. What is meant by a fixed effects model (FEM)? Since panel data have both time and space 

dimensions, how does FEM allow for both dimensions? 

Q 3. When is fixed effect is preferred over random effect? 

Q4. What is the significance of the group effects in FEM? 
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4.1 INTRODUCTION: 

Random Effects: If the unobserved individual heterogeneity, however formulated, can be 

assumed to be uncorrelated with the included variables, then the model may be formulated as 

       yi t = xi tβ + E[ziα] + ziα − E[ziα] + εi t = x i tβ + α + ui + εi t , 

that is, as a linear regression model with a compound disturbance that may be consistently, 

albeit inefficiently, estimated by least squares. This random effects approach specifies that ui is 

a group specific random element, similar to εi t except that for each group, there is but a single 

draw that enters the regression identically in each period. 

Again, the crucial distinction between these two cases is whether the unobserved individual 

effect embodies elements that are correlated with the regressors in the model, not whether these 

effects are stochastic or not.We will examine this basic formulation, then consider an extension 

to a dynamic model. 

Random Parameters: The random effects model can be viewed as a regression model with a 

random constant term. With a sufficiently rich data set, we may extend this idea to a model in 

which the other coefficients vary randomly across individuals as well. The extension of the 

model might appear as 

                          yi t = xi t (β + hi ) + (α + ui ) + εi t , 

where hi is a random vector which induces the variation of the parameters across individuals. 

This random parameters model was proposed quite early in this literature, but has only fairly 

recently enjoyed widespread attention in several fields. It represents a natural extension in 

which researchers broaden the amount of heterogeneity across individuals while retaining some 

commonalities—the parameter vectors still share a common mean. Some recent applications 

have extended this yet another step by allowing the mean value of the parameter distribution to 

be person-specific, as in 
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                   yi t = xi t (β + zi + hi ) + (α + ui ) + εi t , 

 

where zi is a set of observable, person specific variables, and_is a matrix of parameters to be 

estimated. As we will examine later, this hierarchical model is extremely versatile. 

4.2 OBJECTIVES: 

1. To understand the Random Effect Model. 

2. Distinguish between the fixed effect and random effect model. 

3. To understand the Hausman Specification Test  for the random effects model. 

4.3 RANDOM EFFECTS MODEL: 

Although straightforward to apply, fixed effects, or LSDV, modeling can be expensive in terms 

of degrees of freedom if we have several cross-sectional units.  If the dummy variables do in 

fact represent a lack of knowledge about the (true) model, why not express this ignorance 

through the disturbance term uit? This is precisely the approach suggested by the proponents of 

the socalled error components model (ECM) or random effects model (REM). The basic 

idea is to start with: 

 

               Yit = β1i + β2X2it + β3X3it + uit (1) 

 

Instead of treating β1i as fixed, we assume that it is a random variable with a mean value of β1 

(no subscript i here). And the intercept value for an individual company can be expressed as 
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                 β1i = β1 + εi i = 1, 2, . . . , N (2) 

 

where εi is a random error term with a mean value of zero and variance of σ2 ε . What we are 

essentially saying is that the four firms included in our sample are a drawing from a much larger 

universe of such companies and that they have a common mean value for the intercept ( = β1) 

and the individual differences in the intercept values of each company are reflected in the error 

term εi . 

Substituting (2) into (1), we obtain: 

 

    Yit = β1 + β2X2it + β3X3it + εi + uit = β1 + β2X2it + β3X3it + wit 

                                                                                                (3) 

where 

                         wit = εi + uit (4) 

The composite error term wit consists of two components, εi , which is the cross-section, or 

individual-specific, error component, and uit , which is the combined time series and cross-

section error component. The term error components model derives its name because the 

composite error term wit consists of two (or more) error components. 

The usual assumptions made by ECM are that 

 

 εi ∼ N0, σ2 ε uit ∼ N 0, σ2 u (5) 

E(εiuit) = 0 E(εiεj ) =0 (i = j ) 

E(uituis) = E(uitujt) = E(uitujs) =0 (i = j ; t = s). 
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that is, the individual error components are not correlated with each other and are not 

autocorrelated across both cross-section and time series units. 

Notice carefully the difference between FEM and ECM. In FEM each cross-sectional unit has 

its own (fixed) intercept value, in all N such values for N cross-sectional units. In ECM, on the 

other hand, the intercept β1 represents the mean value of all the (cross-sectional) intercepts and 

the error component εi represents the (random) deviation of individual intercept from this mean 

value. However, keep in mind that εi is not directly observable; it is what is known as an 

unobservable, or latent, variable. As a result of the assumptions stated in (5), it follows that 

  

          E(wit) = 0 (6) 

          var (wit) = σ2ε + σ2 u (7) 

 

Now if σ2ε = 0, there is no difference between models (1) and (3), in which case we can simply 

pool all the (cross-sectional and time series) observations and just run the pooled regression, as 

we did in (1). As (7) shows, the error term wit is homoscedastic. However, it can be shown that 

wit and wis (t = s) are correlated; that is, the error terms of a given cross-sectional unit at two 

different points in time are correlated. The correlation coefficient, corr (wit, wis), is as follows: 

                     

                   corr (wit, wis) = σ2ε σ2ε + σ2 u (8) 

 

Notice two special features of the preceding correlation coefficient. First, for any given cross-

sectional unit, the value of the correlation between error terms at two different times remains the 
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same no matter how far apart the two time periods are, as is clear from (8). This is in strong 

contrast to the first-order [AR(1)] scheme, where we 

found that the correlation between time periods declines over time. Second, the correlation 

structure given in (8) remains the same for all crosssectional units; that is, it is identical for all 

individuals. 

4.4 FIXED EFFECT OR RANDOM EFFECT MODEL: 

Which model is better FEM or REM the answer things around the assumption one makes about 

the likely correlation between the individual error component Ei & the X regressors. 

 If assume that Ei & the X's are uncorrelated REM. 

 If assume that Ei & the X's are correlated REM. 

 If T is large & the N is small. There is little diff in the value of parameters estimated by 

FEM and REM. Here FEM will be preferable coice here depend upon computationa; 

convenience. 

 If T is small & N is large estimate from two will ne different  

Under the ECM = 1i = 1 + Ei where FEM are that 1i as fixed & non random. In this case 

FEM. 

 If the individual error component Ei 7 one or more regression are correlated then REM 

are baised estimates and FEM are unbiased. 

 If N is large & T is small & if the assumption undertying REM held, REM estimator are 

more efficient the FEM estimator. 

 Hausman Test will decide which one is good. 

4.5 HAUSMAN  SPECIFICATION  TEST FOR THE RANDOM EFFECT MODEL: 

 

Qt = )1.......()..........(13210 FDuRIP tttt    

)2......()..........(210 FSuPQ ttt    
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   P=Price, Q = Queenly 

   I = Income, R = Wealth  

   U’s = error term  

Assume I  & R are exogenous  

& P & Q are endogenous  

Under eq. (2), if there is no simultaneity prob., Pt & tu2  should be uncorrelated or will be 

correlated. To find the which case, the Hausman test proceeds as follows.  
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Putting 6 and 2  
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Under the null hypothesis that is on simultaneity, the correlation between .. and  u2t  should be 

zero, asymptotically. Thus, if we run the regression (7) is statistically zero, we can conclude that 

there is no simultaneity problem. Of course, this conclusion will be reversed if we find this 

coefficient to be statistically significant. 

 

4.5.1 Hausman test involves the follows steps: 

Step 1: Regress Pt on It and Rt to obtain.  

Step 2: Regress Qt on tt VP ˆ&ˆ  and perform a t test on the coefficient of . If it is significant, do not 

reject the hypothesis of simultaneity; otherwise, reject it. For effective estimation, however, 

Pindyck and Rubinfeld suggest regressing Qt on Pt and tV̂. 
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4.6 SUMMARY AND CONCLUSIONS: 

1. Panel regression models are based on panel data. Panel data consist of observations on the 

same cross-sectional, or individual, units over several time periods. 

2. There are several advantages to using panel data. First, they increase the sample size 

considerably. Second, by studying repeated cross-section observations, panel data are better 

suited to study the dynamics of change. Third, panel data enable us to study more complicated 

behavioral models. 

3. Despite their substantial advantages, panel data pose several estimation and inference 

problems. Since such data involve both cross-section and time dimensions, problems that plague 

cross-sectional data (e.g., heteroscedasticity) and time series data (e.g., autocorrelation) need to 

addressed. There are some additional problems, such as cross-correlation in individual units at 

the same point in time. 

4. There are several estimation techniques to address one or more of these problems. The two 

most prominent are (1) the fixed effects model (FEM) and (2) the random effects model (REM) 

or error components model (ECM). 

5. In FEM the intercept in the regression model is allowed to differ among individuals in 

recognition of the fact each individual, or crosssectional, unit may have some special 

characteristics of its own. To take into account the differing intercepts, one can use dummy 

variables. The FEM using dummy variables is known as the least-squares dummy variable 

(LSDV) model. FEM is appropriate in situations where the individualspecific intercept may be 

correlated with one or more regressors. A disadvantage of LSDV is that it consumes a lot of 

degrees of freedom when the number of cross-sectional units, N, is very large, in which case we 

will have to introduce N dummies (but suppress the common intercept term). 

6. An alternative to FEM is ECM. In ECM it is assumed that the intercept of an individual unit 

is a random drawing from a much larger population with a constant mean value. The individual 

intercept is then expressed as a deviation from this constant mean value. One advantage of ECM 

over FEM is that it is economical in degrees of freedom, as we do not have to estimate N cross-
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sectional intercepts.We need only to estimate the mean value of the intercept and its 

variance.ECMis appropriate in situations where the (random) intercept of each cross-sectional 

unit is uncorrelated with the regressors. 

7. The Hausman test can be used to decide between FEM and ECM. 

8. Despite its increasing popularity in applied research, and despite increasing availability of 

such data, panel data regressions may not be appropriate in every situation. One has to use some 

practical judgment in each case 

4.7 LETS SUM IT UP: 

The preceding section has shown a few of the extensions of the classical model that can be 

obtained when panel data are available. In principle, any of the models we have examined 

before this lesson  including the multiple equation models, can be extended in the same way. 

The main advantage, as we noted at the outset, is that with panel data, one can formally model 

the heterogeneity across groups that is typical in microeconomic data.To some extent the  model 

of heterogeneity can be misleading. What might have appeared at one level to be differences in 

the variances of the disturbances across groups may well be due to heterogeneity of a different 

sort, associated with the coefficient vectors. We also examined some additional models for 

disturbance processes that arise naturally in a multiple equations context but are actually more 

general cases of some of the models we looked at above, such as the model of groupwise 

heteroscedasticity. 

4.8 EXCERCISES: 

Q1. What is latent variable? 

Q2. Discuss Lagrange multiplier test. 

Q3. What is meant by an error components model (ECM)? How does it differ from FEM? 

When is ECM appropriate? And when is FEM appropriate? 
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Q4.  Is there a difference in FEM, least-squares dummy variable (LSDV) model, and covariance 

model? 

Q5. When are panel data regression models inappropriate? Give examples. 

Q.6 Which is a better model, FEM or ECM? Justify your answer 
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