MSc Physics

Q. No.	Question	Option A	Option B	Option C	Option D
1	Multiplication of $(\cos 2\pi/3 + i \sin 2\pi/3)$, $(\cos \pi/2 + i \sin \pi/2)$ and $(\cos \pi/3 + i \sin \pi/3)$ is	1	i	-i	-1
2	Which of the following is incorrect?	coshcois	sinh=sin	con=cosk	<i>i</i> si n =sin h
	For the differential A(x,y)dx + 6xydy to be exact, the function A(x,y) should be	Зx	3x ²	Зу	3y ²
4	The velocity vector of an object is given by 8i - 3j m/s. What is the speed of the object?	11 m/s	5 m/s	√55 m/s	√73 m/s
5	For what value of x will the two vectors $a = i + 2j + 2k$ and $b = 2i$ + $3j + xk$ be perpendicular to each other?	2	-2	4	-4
6	If $a= b + \lambda c$ then which of following is always true for the vectors?	$\vec{a}\vec{c}=\vec{b}\vec{c}$	$\vec{a}\vec{c}=\vec{b}\vec{c}$	$\vec{a}\vec{c}=\vec{b}\vec{c}$	$\vec{a}\vec{c}=\vec{b}\vec{c}$
7	A scalar field is given by . Its gradient will be: $\varphi = xy^2 z^3$	6yz ²	$xy^2z^3\vec{\imath} + xy^2z^3\vec{\jmath} + xy^2z^3\vec{k}$	$y^2 z^3 \vec{i} + 2xyz^3 \vec{j} + 3xy^2 z^2 \vec{k}$	None of the above
	Laplacian scalar field $\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ of a by	1	x+y+z	$\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$	0
9	Which of the following is not true?	\(\\$\\$\#\\$\#\\\$\#\\\$\#\\\$\#\\\$\#\\\$\#\\	√∅₰≠₫√ү≁ң₮₡₡	$\nabla \cdot (d\hat{a}) = d\nabla \cdot \vec{a} + \vec{a} \cdot \nabla q$	None of the above
10	Which of the following functions can not have the Fourier series expansion?	$\sin x$; $(-\pi/4 \le x \le \pi/4]$	$\cos x$; $(-\pi/4 \le x \le \pi/4]$	$\tan x; (-\pi/4 \le x \le \pi/4]$	$\cot x; (-\pi/4 \le x \le \pi/4]$
11	The maximum line integral of a	Divergence of a vector field	Divergence of a scalar field	Curl of a vector field	Curl of a scalar fields

12	Which of the following is correct for the differential equation	It's a Third order first degree differential equation	It's a Third order second degree differential equation.	It's a second order third degree differential equation	It's a first order first degree differential equation
	The essential singular point of the Simple Harmonic equation $2^{2} = 0$	0	1	ω	None of the above
13	$y'' + \omega^2 y = 0$ is at: The complex function $z = 2y + ix$				
14	is differentiable at $z = 2y + ix$	y = 2x	2y = x	$\mathbf{x} = 0$	None of the above
15	The branch point of the function $(z^2 - 1)^{1/2}$ is	z = 0	z=i	z = -i	z = 1
16	The ratio of intensities of two waves is 25:9. The interference of two waves would produce maximum and minimum intensities ratio	2	3	5	8
17	Two simple harmonic oscillators having same amplitudes and same frequencies but phase difference of $\pi/2$ are superimposed perpendicular to each other. What will be the shape of the motion?	straight line	circle	ellipse	None of the above
18	Two particles each having mass m are attached with the identical springs having force constants k are attached as shown in figure. What will be the larger normal mode frequency for this		k/m	2k/m	3k/m
19	The Laplace correction in the speed of sound in air is the consideration of the process to be	isothermal	isobaric	adiabatic	None of the above

20	The phase difference between the incident and reflected waves from an open end is	0	π/2	π	the wave does not reflect from open end
21	Statistical thermodynamics provide an additional interpretation of concept of	entropy	thermodynamics probability	sum of thermodynamics probability for macrostate	energy of system
22	If the system is degenerate then their degeneracy is more than one and if the system is non- degenerate then their degeneracy is	1	2	3	4
23	In which statistics number of particles are Unlimited?	Fermi Dirac Statistics	Bose Einstein Statistics	MB & BE Statistics	None of the above
24	Which conditions are required for Fermi Dirac Statistic	$n_j \ge g_j$	$n_j \leq g_j$	$n_j \neq g_j$	None of the above
25	Relation between Entropy(S) and Thermodynamic probability(Ω)	S=K _B	$S=K_B\log(\Omega)$	S=Ω	S=K _B
26	thermodynamic probability for Maxwell Boltzmann statistics is	1836	1336	3.37x10 ⁵	$3.37 \text{x} 10^2$
27	The Maxwell Boltzmann Statistical Law is given by the	1 E g kT	$\frac{1}{e^{1+\frac{E}{kT}}}$	$e^{\alpha+n\frac{E}{kT}}$	$e^{\alpha + \frac{E}{kT}}$
28	Phase space is a	3 dimensional space	4 dimensional space	5 dimensional space	6 dimensional space
29	The vibrational partition function equation is given by	$Q_{vib} = \left(1 + e^{-\frac{hv}{kT}}\right)^{-1}$	$Q_{vib} = \left(1 - e^{-\frac{hv}{kT}}\right)^{-1}$	$Q_{vib} = \left(1 + e^{\frac{hv}{kT}}\right)^{-1}$	$Q_{vib} = \left(1 - e^{\frac{hv}{kT}}\right)^{-1}$
30	How many different ways can two distinguishable balls can be placed in two boxes	2	4	6	8
31	the possible states of a mechanical system that has an exactly specified total energy is represented by	canonical ensemble	grand canonical ensemble	Microcanonical ensemble	partition function

32	let $\Omega(E)$ be the number of	$\omega(E) = \frac{\Omega(E)}{\delta E}$	$\omega(E) = \Omega(E)\delta E$	$\omega(E) = \frac{\Omega(E)\delta E}{2}$	$\omega(E) = \frac{\Omega(E)}{E}$
	microstates accessible to the	δE		2	E
33	the number of states of a system with f degrees of freedom and whose energy lies between E and E+ δ E approximately varies with energy E of the system as	E ^{3N}	E^{f}	E ^{N/2}	$\mathrm{E}^{\mathrm{f}/2}$
34	An interaction between the systems without a change in the external parameter is known as pure	Thermal interaction	Mechanical interaction	General interaction	Mixed interaction
35	The correct expression for the number of accessible states in the energy interval E and $E+\delta E$ for an ideal monoatomic gas of N molecules enclosed in volume V	BV ^N E ^{3N}	$\mathrm{BV}^{\mathrm{N/2}}\mathrm{E}^{\mathrm{3N/2}}$	BVE ^{3N/2}	BV ^N E ^{3N/2}
36	Two distinguishable molecules are distributed in three equal sized compartments. The number of possible macrostates and microstates are	(6,6)	(6,9)	(3,6)	(9,6)
37	A jet plane starts from rest with an acceleration of 3m/s ² and makes a run for 35s before taking off. What is the minimum length of the runway?	105 m	1837.5 m	2451 m	1204 m
38	The Probability of having at least one tail in five throws with a coin is	31/32	1/32	1/5	1

	-				
	Two springs in horizontal spring				
	mass systems have spring				
	constants in the ratio 2:3. By				
	what ratio should they be			_	
	extended from their mean	3/2	$\sqrt{3}$ $\sqrt{2}$	9/4	4/9
	positions so that they have the				
	same value of maximum speed?				
	The masses of blocks are the				
39	same in both cases.				
	Suppose you place a sphere of				
	mass 'm' and radius 'r' inside a				
	smooth, heavy hemispherical				
	bowl of radius of 37r placed on a	$2\pi\sqrt{(m/37rg)}$	$2\pi\sqrt{(m/rg)}$	$12\pi\sqrt{r/g}$	$2\pi\sqrt{r/g}$
	horizontal table. If the sphere is				
	given a small displacement, what				
40	is its period of oscillation				
					The force system should
	Which of the following is the	The force system should	The force systems should	The system should be co-	be in equilibrium, co-
	condition for the three-force	be in equilibrium only	be non-coplanar	planar, parallel	planar, concurrent, or
41	theorem in mechanics				parallel
		It's a sketch of a moving	It's a sketch of an	It's a sketch of an isolated	It's a sketch of a body in
		body that shows internal	undisturbed body that	body that shows external	motion that shows
		forces of the body and	shows external forces of the	forces of the body and	bending forces of the
42	What is a free-body diagram	reaction forces	body	reaction forces	body
	The moment is the cross product				
	of which of the following two	Force and Radius scalars	Radius and Force scalars	Force and Radius vectors	Radius and Force vectors
43	vectors/scalars				
	Two of the things of the				
	composite materials are to be	Weight of the centre of	Weight of the body	Location of the centroid of	Location of the centre of
	known so that their mass moment	gravity	weight of the body	gravity	mass
	of inertia can be varied. Which of				
44	the following is one of them				

45	The maximum height of a projectile on a horizontal plane, is	u² sin²α/2g	$u^2 \cos^2 \alpha/2g$	$u^2 \sin^2 \alpha/g$	u ² cos ² α/g
46	Non-coplanar non-concurrent forces are those forces which	Meet at one point, but their lines of action do not lie on the same plane	Do not meet at one point and their lines of action do not lie on the same plane	Do not meet at one point but their lines of action lie on the same plane	None of the above
47	The velocity ratio of a differential wheel and axle with 'D' as the diameter of effort wheel and d1 and d2 as the diameters of larger and smaller axles respectively, is	$D/(d_1 + d_2)$	D/(d1 - d2)	$2D/(d_1 + d_2)$	2D/(d1 - d2)
48	A particle moves along a straight line such that distance (x) traversed in 't' seconds is given by $x = t^2$ (t - 4), the acceleration of the particle will be given by the equation	6t² - 8t	$3t^2 + 2t$	6t - 8	6t - 4
49	Which of the following statement is correct	The periodic time of a particle moving with simple harmonic motion is the time taken by a particle for one complete oscillation	The periodic time of a particle moving with simple harmonic motion is directly proportional to its angular velocity	The velocity of the particle moving with simple harmonic motion is zero at the mean position	The acceleration of the particle moving with simple harmonic motion is maximum at the mean position
50	If 'P' is the force acting on the body, 'm' is the mass of the body and 'a' is the acceleration of the body, then according to Newton's second law of motion,	$\mathbf{P} + \mathbf{m}.\mathbf{a} = 0$	P - m.a = 0	$P \times m.a = 0$	P/m.a = 0
51	The ratio of limiting friction and normal reaction is known as	Coefficient of friction	Angle of friction	Angle of repose	Sliding friction

52	The velocity of a particle (v) moving with simple harmonic motion, at any instant is given by (where, $r =$ Amplitude of motion, and $y =$ Displacement of the particle from mean position.) When the spring of a watch is	ω.√(y² - r²)	ω.√(r² - y²)	$\omega^2 \cdot \sqrt{(y^2 - r^2)}$	$\omega^2 \cdot \sqrt{(r^2 - y^2)}$
53	wound, it will possess	Strain energy	Kinetic energy	Heat energy	Electrical energy
54	The moment of inertia of a thin disc of mass 'm' and radius 'r', about an axis through its center of gravity and perpendicular to the plane of the disc is	mr ² /2	mr ² /4	mr ² /6	mr ² /8
				$d = \frac{a}{\sqrt{a}}$	$d = \frac{a}{\sqrt{12} + 12}$
55 56	planar spacing is The co-ordination number in diamond is	$\frac{\sqrt{h^2 + k^2 + l^2}}{4}$	$\frac{\sqrt{h^2 + k^2 + l^2}}{6}$	$\frac{\sqrt{h^2 + k^2}}{8}$	$\frac{\sqrt{k^2 + l^2}}{12}$
57	A beam of X-rays of wavelength 0.72 Å is diffracted from KCl crystal of density 2000 kg/m ³ . Assuming the crystal to be face centred cubic, the interpanalar spacing for (200) plane is	3.14 Å	3.41 Å	3.31 Å	3.33 Å
58	Which direct lattice is the reciprocal of its own reciprocal lattice.	fcc	bcc	scc	None of the above
59	Name the type of diode whose characteristics is shown in figure below	$\begin{array}{c c} & \uparrow \\ (\mu A) \\ p \\ \hline \\ (valt) \end{array} e$	ideal diode	p-n junction diode	None of the above

60	The atoms in a solid are held together by	internuclear forces	gravitational forces	interatomic forces	weak forces
61	The dispersion relation relates between	ω and K	ω and c	K and c	None of the above
62	The time between the successive collisions is termed as	mean time	relaxation time	time period	time constant
63	The band theory of solids, the band which is completely empty at 0 K is known as	conduction band	forbidden band	valence band	hyper band
64	Meissner effect is the phenomenon due to which the magnetic lines of force through a superconductor are	attracted	come close to each other	repelled away	allowed to pass through a superconductor
65	The phase difference between the input and output voltages in a common emitter arrangement is	180^0	90^0	270^0	0^0
66	A half wave rectifier has an input voltage of 240 V r.m.s. If the step down transformer has a turns ratio of 8:1, what is the peak load voltage. Ignore diode drop		86.5 V	30 V	42.5 V
67	The purpose of a coupling capacitor in a transistor amplifier is to	increase the output impedance of a transistor	protect the transistor	pass a.c. and block d.c.	provide biasing
68	Which expression mention the De Morgan's theorem		$\overline{A + B} = \overline{A}\overline{B}$	AB	
69	What is the addition of the binary number 101001+ 010011=?	10100	111100	000111	101110

70	A classification of integrated circuits with complexities of 30 to 300 equivalent gates on a single chip is known as	VLSI	SSI	LSI	MSI
71	is used as a fuel of nuclear reactor	C-60	P-32	I-131	U-235
72	Which statement is true for all three types of radioactive emission	They are deflected by electric fields	They ionise gases	They are completely absorbed by a thin aluminum sheet	They emit light
73	An iron rod is heated. The colors at different temperatures are noted. Which of the following colors shows that the iron rod is at the lowest temperature	red	orange	white	blue
74	For pair production phenomenon to occur the photon must have energy greater than or equal to	0.51MeV	1.02 MeV	0.32 MeV	0.64 MeV
75	The kinetic energy of the α- particle incident on the gold foil is doubled. The distance of closest approach will also	double	half	can not determine	None of the above
76	The guided terminations are used to	Increase reflection	Increase transmission	Eliminate reflection loss	Eliminate attenuation
77	Calculate the phase constant of a wave with frequency 12 rad/s and velocity 3×10^8 m/s(in 10^{-8} order)	0.5	72	4	36
78	In the medium of free space, the divergence of the electric flux density will be	1	0	-1	infinity

	Three charged cylindrical sheets				
	are present in three spaces with σ				
	= 5 at R = 2m, σ = -2 at R = 4m	17/6	-17/6	13/6	-13/6
	and $\sigma = -3$ at R = 5m. Find the	1770	-1770	13/0	15/0
79	flux density at $R = 6m$.				
	The skin depth of a conductor				
	with attenuation constant of 7	14	49	7	1/7
80	neper/m is				_, .
	The motion of a wave packet is				
81	similar to	photon	classical particle	quantum particle	waves
	in an ideal gas the molecules			both kinetic and potential	
82	have	k.e. only	p.e. only	energy	None of the above
	the value of universal gas	8.314 J / K mole Kelvin	8314 j / Mole k	8.314 joule/ mole k	None of the above
83	constant is		8314 J / WIOle K	-37	
	root mean square velocity of gas	3m	3KT		KT
84	molecules in a vessel can be	V KT	M	MK	3 <i>M</i>
	in an isothermal process the	increase	decrease	remain constant	zero
85	internal energy of the system	Increase			2010
	first law of thermodynamics				
	when applied to an adiabatic	W = du	W = Q	Q = du	w = -du
86	process becomes				
	The neutrino and antineutrino are	charge	rest mass	helicity	parity of ground state
87	distinguished by			includy .	wavefunction
	The accelerator used to	cyclotron	Van de Graff generator	betatron	tandem Van de Graff
88	accelerate electrons is				generator
89	and	R,γ	γ 1/R,1/	γ R, 1/	<u>γ</u> 1/R,
	If temperature of sink is				
	decreases efficiency of carnot	remains constant	decreases	increases	None of the above
90	engine is				
	A nucleus emits a α -particle,	An isotone of the original	An isotope of the original		
	followed by two β -particles. The	one	one	An isobar of the original one.	None of the above
91	final nucleus will be	UIC	UIIC		

92	Nuclear force is	Spin independent	Both charge and spin independent	Spin dependent but charge independent	Charge dependent
93	The Surface-energy term appears in semi-empirical mass formula as a result of	Repulsion between the charged particles, protons, in the nucleus	Reduction of total binding energy due to nucleons on the surface of the nucleus	Excess number of neutrons in the nucleus	intrinsic nucleonic spin
94	The fact that the binding energy per nucleon is roughly a constant over most of the range of stable nuclei is a consequence of the fact that the nuclear force is	Short range	Long range	Weak	Strong
95	A particle moves in such a way that its kinetic energy just equals its rest energy. The velocity of this particle is	0.866c	c/4	С	0.707c
96	Which one of the following statements is correct?	The mass of the nucleus must be less than the sum of the masses of the constituent neutrons and protons.	The mass of the nucleus must be equal to the sum of the masses of the constituent neutrons and protons	The mass of the nucleus must be greater than the sum of the masses of the constituent neutrons and protons.	
97	The nucleus which is an isotope of Cl-37 and also an isobar of Ar- 18 has mass number A and atomic number Z given by	A=35, Z=18	A = 37, Z = 17	A = 39, Z = 17	A = 37, Z = 19
98	Complete the sequence of magic numbers as, 2, 8, 20, 50,,126, 184.	60	72	82	100
99	The volume of a nucleus in an atom is proportional to the	Mass number	Proton number	Neutron number	Electron number
100	A conservation law that is not universal but applies only to certain kinds of interactions is conservation of	lepton number	spin	charge	strangeness